
 

Thesis for the degree 

Doctor of Philosophy 

By 

Dan Mikulincer 

Advisor: 
Prof. Ronen Eldan 

June, 2021 

Submitted to the Scientific Council of the 
Weizmann Institute of Science 

Rehovot, Israel 

גבוהה ממדיותבמערכות בעלות אוניברסליות   
Universality of High-Dimensional Systems 

 עבודת גמר )תזה( לתואר

 דוקטור לפילוסופיה

 מאת

 דן מיקולינסר

 תמוז התשפ"א

למועצה המדעית של תמוגש  
 מכון ויצמן למדע
 רחובות, ישראל

:המנח  
 פרופ' רונן אלדן



“Arrakis teaches the attitude of the knife - chopping off what’s incomplete and

saying: ’Now, it’s complete because it’s ended here.’”

Irulan Corrino, ”Collected Sayings of Maud’Dib”



ii



Acknowledgments

It is customary to begin the Acknowledgments section by thanking one’s advisor, which may

sometimes create the impression of simply going through the motions. This is certainly not the

case here, and I am genuinely happy to first thank my advisor, Ronen Eldan. It has been one

hell of a ride through the entirety of my graduate studies. Ronen, you are the epitome of an

Advisor. You were never overbearing but always knew to nudge in the right direction when

necessary. I always felt like I could discuss everything with you in equal terms; even subjects

I later understood were far deeper and more complex than originally envisioned. Thank you

for introducing me to your approach to researching Mathematics, sharing your knowledge and

thoughts, and teaching me the invaluable lesson: that sometimes (but only sometimes) it’s better

to prove what we can rather than we want.

I would also like to express my gratitude to Itai Benjamini, Sébastien Bubeck, Max Fathi,
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5.3 The Föllmer process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.4 Stability for Talagrand’s transportation-entropy inequality . . . . . . . . . . . . 142

5.5 An application to Gaussian concentration . . . . . . . . . . . . . . . . . . . . 149

6 Stability of Invariant Measures, with Applications to Stability of Moment Mea-
sures and Stein Kernels 151
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.3 Proofs of stability bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.4 Proofs of the applications to Stein kernels . . . . . . . . . . . . . . . . . . . . 166

6.5 Transport inequalities for the truncated Wasserstein distance . . . . . . . . . . 174

III Applications in Data Science 177

7 Methods in Non-Convex Optimization - Gradient Flow Trapping 179
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.2 A local to global phenomenon for gradient flow . . . . . . . . . . . . . . . . . 183

7.3 From Lemma 7.4 to an algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.4 Cut and flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.5 Gradient flow trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

viii



7.6 Lower bound for randomized algorithms . . . . . . . . . . . . . . . . . . . . . 195

7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

8 Memorization with Two-Layers Neural Networks 205
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.3 Elementary results on memorization . . . . . . . . . . . . . . . . . . . . . . . 210

8.4 The NTK network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

8.5 The complex network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

8.6 Hermite polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

8.7 More general non-linearities . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

9 Community Detection and Percolation of Information in a Geometric Setting 233
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

9.2 The upper bound: Proof of Theorem 9.2 . . . . . . . . . . . . . . . . . . . . . 240

9.3 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

ix



x



Abstract

The main theme explored in this thesis is the interplay between dimension and probabilistic

phenomena. The ’curse of dimensionality’ is a well-known heuristic that suggests that the

complexity of problems should scale exponentially with the dimension. We choose the path of

optimism and are interested in identifying unifying and universal structures of high-dimensional

distributions that may circumvent the ’curse of dimension.’

In Part I we revisit the classical Central Limit Theorem (CLT) and extend it to higher, and

even infinite, dimensions. The main novelty of our results is that the rate of convergence to the

normal distribution is explicit. In particular, we show that this rate is typically polynomial in

the dimension for a large class of measures. In proving these results, we introduce new methods

to establish the validity of normal approximations. These methods are based on a combination

of stochastic analysis with Stein’s method and optimal transport.

Part II is dedicated to the study of stability properties for several functional inequalities.

Loosely speaking, a functional inequality is said to be stable if the following implication holds:

Whenever a measure almost saturates the inequality, it must hold that the measure is close,

in some sense, to another measure that attains equality. By extending the tools developed in

Part I, we identify the normal distribution as the unique equality cases for various functional

inequalities and establish dimension-free stability estimates for these inequalities. Thus, we

obtain new criteria for normal approximations which are qualitatively different from the CLT.

Finally, in Part III we apply our results to answer questions arising from learning and op-

timization theory. In the first work, we resolve a long-standing open question concerning the

optimal complexity of finding stationary points of non-convex functions. In another work, we

study neural networks and introduce several new algorithms to construct efficient networks with

minimal size. The last work is dedicated to community detection in geometric random graphs,

where we obtain both sufficient and necessary conditions for the possibility of this task.

Due to space and time constraints, several additional works are not included in this thesis.

These works revolve around anti-concentration of polynomial with log-concave variables, rapid

decay of Fourier coefficients and infinite dimensional generalizations of optimal transport maps.
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Introduction

Contents

High-dimensional problems have been the focus of much research in recent years. The results

have been applied in various subjects such as theoretical computer science and machine learn-

ing. The central theme of this thesis is the investigation of phenomena in high dimensions.

A particular case of interest lies in dimension-free phenomena, which hold the same in any

dimension.

The well-known ”curse of dimensionality” phenomenon suggests, informally, that the com-

plexity of some problems scales exponentially with the dimension. Thus, at first glance, it

would seem that many high-dimensional problems should be intractable. However, there is

balm as well as bitterness, and some high-dimensional systems exhibit universality properties

which can make their study actually easier, or at least not harder, than their low-dimensional

counterparts. Identifying such properties is often crucial for applications.

A familiar and simple example of this philosophy can be seen in the central limit theorem

(CLT). The CLT states that if (Xi)
n
i=1 are i.i.d. random variables, their sum converges to a

Gaussian. This can be seen as a statement concerning the space Rn equipped with a product

measure which is the joint law of (Xi)
n
i=1. Thus, as the dimension increases, in some sense, this

measure becomes easier to understand.

A large part of this thesis is dedicated to understanding the theory behind this type of univer-

sality phenomena. The over-arching goal is to establish sufficient conditions for such normal

approximations in different settings. This is achieved by combining tools from different fields,

including, among others, ideas stemming from Stein’s theory, stochastic calculus, optimal trans-

port, and Malliavin calculus.

The main results in this direction can be classified into two main categories. The first in-

cludes quantitative extensions of the central limit theorem to higher and even infinite dimen-

sions. In the second, we establish the standard Gaussian as the stable extremal case for a family

functional inequalities. Thus, any measure which comes close to saturating the inequality can

be well approximated by the Gaussian. In the course of proving these results, we develop new

tools as well as expand upon existing ones.
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Another part of this thesis focuses on applying the above and similar results to problems

in neighboring fields, such as data science and machine learning. A recurring concept in such

applications is the interplay between stochastic processes and learning and optimization al-

gorithms. We show several instances where careful analysis of a carefully chosen stochastic

process can lead to information-theoretical lower bounds on various algorithms.

High-Dimensional Central Limit Theorems

The central limit theorem, first proved by Laplace in 1810 ( [177]), is one of the most important

results in mathematical statistics and probability. The main objects the CLT deals with are

sequences Xi of i.i.d. random vectors in Rd, and their normalized partial sums Sn = 1√
n

n∑
i=1

Xi.

The CLT states that as n→∞, Sn converges to a Gaussian law, in a suitable metric.

Despite its significance, this formulation of the CLT may be unsuitable for certain appli-

cations. For instance, the rate at which convergence happens is also important. This rate tells

us how well can a finite sum be approximated by a Gaussian, which is often crucial. In the

1940s Berry and Esseen independently managed to bound from the above the aforementioned

rate ( [35], [108]) in the one-dimensional case.

However, in modern statistics, we are often interested in cases where the dimension, d,

scales as a function of n. A natural question arises in this setting: How should d depend on n to

ensure that Sn converges to a Gaussian? Berry-Esseen’s inequality is inappropriate to answer

such a question, and the situation in high-dimensions has attracted much attention over the years

( [22,32,42,188,217,251]). In the first part of this thesis, we establish quantitative convergence

rates with explicit and often optimal dependence on the dimension in various settings.

In Chapter 1, which is based on the paper [106] we have mainly focused on log-concave

measures and proved a quantitative entropic CLT. Thus, if {Xi}ni=1 are i.i.d. log-concave vectors

in Rd and Sn := 1√
n

n∑
i=1

Xi, then, there exists a Gaussian vector G, such that,

Ent(Sn||G) = O

(
poly(d)

n

)
.

Moreover, if X1 happens to be uniformly log-concave then the bound improves to the optimal,

Ent(Sn||G) = O

(
d

n

)
.

The above results are the first to give a polynomial dependence on the dimension and apply

to the general class of log-concave measures. In particular, the linear dependence for strongly

log-concave measures is optimal. Previous results either gave an exponential dependence on

the dimension ( [44]) or required stronger assumptions such as finiteness of Fisher information
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( [85]). The chapter also goes beyond the log-concave setting. A similar result is proven for

random vectors with bounded support, at the cost of using the weaker quadratic Wasserstein

metricW2.

In the proofs of these results, we’ve introduced a new method to derive quantitative conver-

gence rates. The technique uses stochastic analysis and is based on carefully chosen processes,

which encode entropy. To deal with the quadratic Wasserstein distance, we constructed a high-

dimensional counterpart to the process introduced by Eldan in [98].

In another line of work ( [180]), on which we base Chapter 2, we have considered the CLT

for empirical moment tensors. The main objects of interest are normalized sums of independent

copies of X⊗p for some integer p ≥ 2. The problem has been studied before ( [53, 56, 58, 102,

110, 197]) in different settings, mostly when p = 2 and focusing solely on cases where X has

independent coordinates.

Since the random vector X⊗p is constrained to lie in a d-dimensional manifold of the tensor

space, standard tools, such as those introduced in Chapter 1 cannot be applied directly, if one

wishes to obtain optimal convergence rates. In the chapter we introduce a novel implementation

of Stein’s method to exploit the latent low-dimensional structure of X⊗p. It is shown that under

some regularity assumptions, but with no requirement of independence,

W2
2 (Sn||G) = O

(
d2p−1

n

)
.

where

Sn :=
1√
n

n∑
i=1

(
X⊗pi − E

[
X⊗pi

])
.

We hope that our results may be helpful in similar settings where one considers singular mea-

sures which are supported on low-dimensional manifolds of the ambient space.

The final extension of the CLT appears in Chapter 3 and the paper [105] deals with random

functions in infinite dimensional spaces. Most examples of central limit theorems deal with

random vectors in some finite-dimensional space. To go beyond this setting, consider the d−1-

dimensional sphere Sd−1 and random processes indexed by Sd−1, which are essentially random

elements taking values in the infinite-dimensional space L2(Sd−1).

One particular case of interest is the random function F (x) := ψ(G · x), for some func-

tion ψ : R → R and G a standard Gaussians. In the chapter we study the rate at which

Pn := 1√
n

n∑
i=1

Fi converges to a Gaussian process in an Lp transportation metrics. Our approach

is to embed the processes into some high-dimensional tensor space. In such spaces, the results

obtained in Chapter 2 apply, and we establish several quantitative convergence results, which

depend upon the regularity of ψ. Processes like Pn are ubiquitous in learning theory. They ap-
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pear naturally in algorithms involving neural networks (see [139] for example). Understanding

the extent to which these processes may be approximated by Gaussian processes can further

elucidate the behavior of such algorithms. Prior to this present work there were no quantitative

results in the literature.

Stability of Functional Inequalities

The second part of the thesis deals with stability of functional inequalities. Suppose that H,K :

P (Rd)→ R are two functionals which assign a number to each probability measure, such that,

for every µ ∈ P (Rd),

H(µ) ≤ K(µ). (1)

If E = {µ ∈ P (Rd)|H(µ) = K(µ)} is the set of extremizers, then, at the informal level, we

say that inequality (1) is stable, if we have the implication:

K(µ)− ε ≤ H(µ) =⇒ µ is close to a measure in E.

It turns out that for many well-known inequalities the set of extremizers contains only Gaus-

sians. Thus proving that such inequalities are stable yields a criterion for determining when a

measure can be approximated by a Gaussian.

Chapter 4 is devoted to the celebrated Shannon-Stam inequality ( [219]). According to the

inequality, if X and Y are independent copies of one another and G is a Gaussian with the same

covariance as X , then

Ent

(
X + Y√

2
||G
)
≤ Ent(X||G).

Moreover, Gaussians are known the only equality cases. One could compare this with the CLT

in which we deal with the n-fold convolution of random vectors. In this sense, the stability of

this inequality is a more delicate question that asks what happens after a single convolution.

In [20], Ball, Barthe, and Naor, gave the first quantitative version of this inequality for one-

dimensional random variables. This result was later generalized in [21] for log-concave vectors

in any dimension. For X and Y , independent copies of an isotropic log-concave random vector,

the result bounds from below the deficit in the inequality in terms of Ent(X||G).

From the perspective of stability, in [84], Courtade, Fathi and Pananjady gave a similar re-

sult, where they removed the restriction that X and Y have identical laws. This was done at the

cost of restricting the result to strongly log-concave vectors and the weaker quadratic Wasser-

stein distance. The paper raised the question of whether an equivalent stability result might hold

for general log-concave vectors under the relative entropy distance. The main result of Chapter

4 expands the method introduced in Chapter 1 to give an affirmative answer to this question.

The chapter is based on the paper [103].
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Chapter 5 is a follow-up to the previous chapter and is based on the paper [179]. In this

chapter we explore stability properties of other functional inequalities. Namely, Talagrand’s

transport entropy inequality [229] and Gross’ log-Sobolev inequality [130] which respectively

state,

W2
2 (X,G) ≤ 2Ent(X||G) and 2Ent(X||G) ≤ I(X||G).

Here, I(X||G) stands for the relative Fisher information of X . The main result can be stated in

the following way. Let X be a log-concave vector on Rd, with a spectral gap c. Then

2Ent(X||G)−W2
2 (X,G) ≥ cEnt(X||G)

I(X||G)− 2Ent(X||G) ≥ cEnt(X||G). (2)

Stability properties of these inequalities have been studied by various authors (see [39, 81,

101, 113, 116, 155, 162]). The main contribution of [179] was to show that the two inequalities

stem from the same general principles and so their stability properties are related. This led to the

strengthening of many previously known results, both by considering larger classes of random

vectors and by establishing stability bounds in the stronger relative entropy distance.

Moreover, it is well-known that the above inequalities are intimately related to the concen-

tration of measure phenomenon. Since the bounds we obtain are uniform over the class of

measures which are log-concave with respect to the Gaussian, we also prove as a corollary an

improved concentration bound for convex functions of the Gaussian.

In Chapter 6 we consider a family of functional inequalities, which arise naturally from a

recent approach (see [68]) to Stein’s method. A matrix valued map τX is said to be a Stein

kernel for a random vector X , if the following integration by parts formula holds,

E [〈∇f(X), X〉] = E [〈τX(X),Hessf(X)〉HS] .

The existence of such kernels was explored in a variety of settings (see [85,112,194] for exam-

ples). In fact, the main ingredient in the proofs given in Chapter 2 was a construction of a Stein

kernel for X⊗p.

The seminal paper of Ledoux, Nourdin and Peccati, [161], shows that Stein kernels may be

used to bound some known distances. In particular, they prove the following inequality,

W2
2 (X,G) ≤ E

[
‖τX(X)− Id‖2

HS

]
.

whereW2
2 stands for the quadratic Wasserstein distance and G is a standard Gaussian. Since Id

is a Stein kernel for the standard Gaussian, this may be seen as a stability estimate.

The main goal of this chapter is to go beyond the setting of the standard Gaussian. Based

5



on the paper [114], we prove an inequality of the following form,

W2
2 (X, Y ) . E

[
‖τX(X)− τY (X)‖2

HS

]
.

where τX , τY are Stein kernels for X and Y , respectively.

Our main insight was that Stein kernels may be used to construct stochastic processes with

the laws of X and Y as invariant measures. This reduced the above question to show that if two

Itô processes have similar coefficients, then their invariant measures must be close. By adding

to a line of work concerning the stability of solutions to differential equations, we showed that

this is indeed the case under very general conditions. Besides being mathematically aesthetic,

such a result says that we may efficiently sample from a given measure as long as we can

approximate a Stein kernel to some numerical accuracy.

Applications in Data Science

We now describe the contents of the third part of this thesis in which we apply ideas from high-

dimensional geometry to problems which come from learning and optimization theory. The

connecting thread between all topics is that we are able to formulate exact quantitative state-

ments with respect to the dimension.

Chapter 7, based on [60], deals with a basic setting in optimization theory. We are given a

function f : Rd → R and the goal is to find a point x ∈ Rd such that f(x) is approximately

minimal. In case f is convex, there is a well-established theory, and much is known ( [55]).

On the other hand, if f is not convex, then, in general, finding its minimum is not a tractable

problem. Instead, as long as the function is differentiable, we content ourselves with finding

approximate stationary points. That is, some x ∈ Rd for which ‖∇f(x)‖ is small.

Under some minimal regularity assumptions, one can always find a stationary point of f

by simply following the direction of steepest descent, i.e., advancing in the direction opposite

of f ’s gradient. In fact, by carefully following this procedure it can be shown that after taking

about 1
ε2

steps in these directions one can find a point x ∈ Rd such that ‖∇f(x)‖ < ε. This is

true in any dimension.

In [237], Vavasis showed that when the dimension, d, is fixed, one can modify the gradient

descent procedure and obtain better results. Focusing on the case d = 2, Vavasis showed that 1
ε

steps suffice for finding an ε-stationary point. However, the best possible rate remained open.

Our main contribution in this setting is a new algorithm that improves upon Vavasis’ algorithm

in any fixed dimension. In particular, when d = 2, the algorithm queries the function at most

O
(

1√
ε

)
times. We also complement our result by showing that our algorithm has optimal

performance. Thus, any other algorithm must make at least Ω
(

1√
ε

)
queries, in the worst case,

to find an approximate stationary point.
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We base our algorithm on new ideas, different than gradient descent. Rather than following

the trajectory of the gradient, our algorithm preemptively predicts the location of the gradient

flow for future times. This allows us to outperform all previously known algorithms. For the

lower bound, we construct a distribution over hard instances, inspired by unpredictable random

walks, as introduced by Benjamini, Pemantle, and Peres in [31]. We use these random walks to

construct families of functions which are hard to optimize.

Chapter 8 is devoted to neural networks, which are a very popular learning model, used in

data science. In recent years they have proved successful for a wide range of applications, such

as computer vision and natural language processing. The basic idea is to represent arbitrarily

complex functions as combinations of many simple ones, called neurons. An example of a

simple neural network is a function N : Rd → R, of the form,

N(x) =
k∑
i=1

aiσ(wi · x),

where for each i = 1, · · · , k, ai ∈ R, wi ∈ Rd and σ is a non-linear function. k is also called

the width of the network.

The basic procedure of training a neural network consists of receiving some labeled training

set (xj, yj)
n
j=1, where xj ∈ Rd and yj ∈ R. The goal is then to find a network N , such that

for every j = 1, ..., n, N(xj) ' yj . We say that such a network fits the training set. It is well

known ( [88,166]) that any training set may be well approximated by some network with a large

enough width. Remarkably, even though this suggests that networks can fit random noise, in

many practical settings when yj = f(xj) for some function of interest, the obtained network

is a good approximation for the function f , even outside of the training set. It is precisely this

fact that makes neural networks so popular in practice. However, the theory of this apparently

paradoxical phenomenon is poorly understood.

The chapter is based on [57], in which we tried to make a small step towards better un-

derstanding the theory of neural networks. Specifically, we tackled the question of how large

should k be with respect to the dimension d, and n, so that there even exists a network which

fits a training set of size n. We’ve obtained a nearly optimal bound. Let ε > 0, if (xi) are in

general position, then we show that there exists a neural network N of width k = O(n
d
), such

that
1

n

n∑
j=1

(N(xj)− yj)2 ≤ ε.

Note that d · k is the number of tunable parameters in the neural network. Thus, for general

data sets, it must hold that k ≥ n
d
. Although the question was extensively studied in previous

years [5, 54, 89, 90, 96, 149, 201, 222], the optimal bound k ≥ n
d

remained elusive prior to our

work. We actually give several different constructions which afford the above bound. Among

7



these constructions, our main contribution is based on adding complex weights and on an or-

thogonal decomposition of L2(Rd, γ). We hope that this construction may prove useful beyond

the task of memorization.

In the final Chapter 9 we study the problem of extracting information from large graphs.

Problems of this sort may be encountered while researching social networks, gene networks, or

(biological) neural networks. A particularly important task in this spirit is to learn a useful rep-

resentation of the vertices, that is, a mapping from the vertices to some metric space. Consider

the following instance of a random geometric graph (RGG). The vertices of the graph {Xi}di=1

are uniformly distributed on the d−1-dimensional sphere Sd−1 and for i 6= j, (Xi, Xj) forms an

edge with probability ϕ(〈Xi, Xj〉) for some function ϕ : [−1, 1]→ [0, 1]. When the number of

vertices remains fixed, and d → ∞, a standard application of the CLT shows that this random

model is indistinguishable from an Erdős–Rényi graph. Since the edges are of an Erdős–Rényi

graph are independent, we refer to this graph as having no meaningful geometric interpretation.

One can ask many questions in this setting. The chapter is focused on recovering the latent

position of the vertices, up to the symmetries of the sphere, when observing a single instance

of the graph. We introduce a spectral algorithm that works in every fixed dimension and re-

covers said positions. In essence, this is a geometric generalization of community detection in

the stochastic block model (see [2]). We also provide an impossibility result by proving the

first known lower bounds for recovery in this model. The proofs are based on the analysis of

spherical random walks and exploit the symmetries of the sphere. The chapter is based on the

paper [104].

Preliminaries

Overview of Methods

Here we present some of the recurring methods and tools which appear throughout this thesis.

The main goal of this section is to supply the necessary background needed for this thesis and

we will often refer to this section in the chapters to come. Other than that, we will also explain

how to apply the techniques in some simple scenarios. These applications will later be expanded

in the relevant chapters.

A list of common notations and definition is attached, for the convenience of the reader, at

the end of this section.

The Föllmer Process

The first method to be presented is based on an entropy minimizing process, known in the

literature as the Föllmer process. The high-level idea which underlies the method is to use the

8



process in order to embed a given measure as the terminal point of some martingale, in the

Wiener space. This will induce a coupling between the measure and γ. As will be shown,

the process also solves a variational problem, which turns out to yield a representation formula

for the relative entropy. Combining these two properties will prove beneficial in the study of

functional inequalities, which involve entropy and transportation distances.

The process first appeared in the works of Föllmer ( [119,120]). It was later used by Borell in

[48] and Lehec in [165] to give simple proofs of various functional inequalities. In this section,

we present the relevant details concerning the process. The reader is referred to [100, 106, 165]

for further details and a more rigorous treatment.

Throughout this section we fix a centered measure µ on Rd with a finite second moment ma-

trix and a density f , relative to γ. Consider the Wiener space C([0, 1],Rd) of continuous paths

with the Borel sigma-algebra generated by the supremum norm ‖·‖∞. We endow C([0, 1],Rd)
with a probability measure P and a process Bt which is a Brownian motion under P . We will

denote by ω elements of C([0, 1],Rd) and by Ft the natural filtration of Bt. Define the measure

Q by
dQ

dP
(ω) = f(ω1).

Q is absolutely continuous with respect to P , in which case, a converse to Girsanov’s theorem

implies that there exists a drift, vt, adapted to Ft, in the Wiener space, such that the process

Xt := Bt +

t∫
0

vs(Xs)ds, (3)

has the same law as Q, and that, under Q, Xt is a Brownian motion. In particular, by construc-

tion, under P , X1 ∼ µ and, since dQ
dP

(ω) depends only on ω1, conditioned on X1, Xt serves a

Gaussian bridge between 0 and X1. Thus, by the representation formula for Brownian bridges

Xt
law
= tX1 +

√
t(1− t)G, (4)

where G is a standard Gaussian, independent from X1. We call vt(Xt) the Föllmer drift and Xt

the Föllmer process. As µ and γ are the laws of X1 and B1, it is now immediate that

Ent(Q||P ) ≥ Ent(µ||γ). (5)

A remarkable feature is that, since dQ
dP

depends only on the terminal points, the above is actually

an equality and Ent(Q||P ) = Ent(µ||γ). This implies that the drift, vt, is a martingale (see

Lemmas 10 and 11 in [165]).

We now use Girsanov’s theorem ( [199, Theorem 8.6.3]) to rewrite dQ
dP

as an exponential mar-
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tingale,

dQ

dP
(ω) = exp

− 1∫
0

vt(ω)dXt(ω) +
1

2

1∫
0

‖vt(ω)‖2
2 dt

 .

Under Q, Xt is a Brownian motion, so

Ent (Q||P ) =

∫
C([0,1],Rd)

ln

(
dQ

dP

)
dQ =

1

2

1∫
0

E
[
‖vt(Xt)‖2

2

]
dt,

which gives the formula

Ent(µ||γ) =
1

2

1∫
0

E
[
‖vt(Xt)‖2

2

]
dt. (6)

For simplicity, from now on, we suppress the dependence of vt on Xt. Combining the above

with (5) shows that among all adapted drifts ut such that µ ∼ B1 +
1∫
0

utdt, vt minimizes the

energy in the following sense

vt = arg min
ut

1

2

1∫
0

E
[
‖ut‖2

2

]
dt. (7)

Theorem 12 in [165] capitalizes on the structure of dP
dQ

to give an explicit representation of vt as

vt = ∇ ln (P1−tf(Xt)) . (8)

where P1−t denotes the heat semi-group. Since vt is a martingale, Itô’s formula shows

dvt = ∇vtdBt = ∇2 ln (P1−tf(Xt)) dBt.

The martingale approach: As is often the case, it turns out that it is easier to work with an

equivalent martingale formulation of the Föllmer drift. Consider the Doob martingaleE [X1|Ft].
By the martingale representation theorem ( [199, Theorem 4.33]) there exists a uniquely-defined,

adapted, matrix valued process Γt which satisfies

E [X1|Ft] =

t∫
0

ΓsdBs. (9)

We claim that

vt =

t∫
0

Γs − Id
1− s dBs. (10)

10



Indeed, by Fubini’s theorem

1∫
0

ΓsdBs =

1∫
0

IddBs +

1∫
0

(Γs − Id) dBs = B1 +

1∫
0

1∫
s

Γs − Id
1− s dtdBs

= B1 +

1∫
0

t∫
0

Γs − Id
1− s dBsdt.

For the moment denote ṽt :=
t∫

0

Γs−Id
1−s dBs. Since vt is a martingale vt − ṽt is a martingale as

well and the above shows that for every t ∈ [0, 1], almost surely,

1∫
t

(vs − ṽs)ds|Ft = 0.

This implies the identity (10). In particular, from (8), Γt turns out to be symmetric, which

shows, using Itô’s formula,

2Ent(µ||γ) =

1∫
0

E
[
‖vt‖2

2

]
dt = Tr

1∫
0

t∫
0

E (Γs − Id)
2

(1− s)2
dsdt = Tr

1∫
0

E (Γt − Id)
2

1− t dt. (11)

Also, note that

B1 +

1∫
0

(Γt − Id) dBt =

1∫
0

ΓtdBt ∼ µ,

which implies

W2
2 (µ, γ) ≤ Tr

1∫
0

E
[
(Γt − Id)

2] dt. (12)

As X1 ∼ µ, from (8) we get

Tr

1∫
0

E
[
(Γt − Id)

2]
(1− t)2

dt = E
[
‖v1‖2

2

]
=

∫
Rd

‖∇ ln(f(x))‖2
2 dµ(x) = I(µ||γ). (13)

Combining (11),(12),(13), we see a very satisfying connection between the log-Sobolev and

Talagrand’s transport-entropy inequalities (as in (2)), for

Tr

1∫
0

E
[
(Γt − Id)

2]
(1− t)2

dt ≥ Tr

1∫
0

E
[
(Γt − Id)

2]
1− t dt ≥ Tr

1∫
0

E
[
(Γt − Id)

2] dt,
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implies

I(µ||γ) ≥ 2Ent(µ||γ) ≥ W2
2 (µ, γ) .

These ideas will be revisited in Chapters 4 and 5, where we will introduce a similar proof for

the Shannon-Stam inequality and establish stability estimates and strengthenings for the above

inequalities.

Central limit theorems via the Föllmer process: Let us also show how one can prove central

limit theorems by using the Föllmer process. Let {Xi}ni=1 be i.i.d. as µ and let {Bi
t}ni=1 be inde-

pendent Brownian motions with {Γit}ni=1 i.i.d. copies of Γt, the Föllmer martingale associated

to µ, predictable with respect to Bi
t .

If Sn = 1√
n

n∑
i=1

Xi, then Sn
law
= 1√

n

n∑
i=1

Y i
1 where dY i

t = ΓitdB
i
t . By standard reasoning

about Gaussians random variables, we may write
n∑
i=1

Y i
t as another process Ỹt with dỸt =√

1
n

n∑
i=1

(Γit)
2
dB̃t and B̃t is some Brownian motion. Denote Γ̃t =

√
1
n

n∑
i=1

(Γit)
2 and note that

Ỹt =

∫ t

0

E[Γ̃t]dB̃t +

∫ t

0

(
Γ̃t − E[Γ̃t]

)
dB̃t.

Let γ̃ :=
∫ 1

0
E[Γ̃t]dB̃t. Observe that γ̃ follows some (non-standard) Gaussian law. More-

over, there is a natural coupling between γ̃ and Ỹ1, which shows, using Itô’s isometry

W2
2

(
γ̃, Ỹ1

)
≤ E

[(∫ 1

0

(
Γ̃t − E[Γ̃t]

)
dB̃t

)2
]

= E
[∫ 1

0

(
Γ̃t − E[Γ̃t]

)2

dt

]
=

∫ 1

0

Var
(

Γ̃t

)
dt,

where the last equality is due to Fubini’s theorem. Recall that Γ̃t =

√
1
n

n∑
i=1

(Γit)
2. So, the law

of large numbers suggests that as n → ∞, Γ̃t →
√
E [Γ2

t ] and, in particular,W2
2

(
γ̃, Ỹ1

)
→ 0,

which is the central limit theorem. This idea is made both rigorous and quantitative in Chapter 1.

Stein’s method via Stein kernels

The second method to appear prominently in this thesis is a somewhat modern manifestation

of Stein’s method through the so-called Stein kernels. Stein’s method is a well-known set of

techniques which was developed in order to answer questions related to convergence rates along

the CLT. The method was first introduced in [224, 225] as a way to estimate distances to the

normal law. Since then, it had found numerous applications in studying the quantitative central

limit theorem, also in high-dimensions (see [211] for an overview).
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At the heart of the method lies the following observation, sometimes called Stein’s lemma

( [70, Lemma 2.1]): If G ∼ γd, is a standard Gaussian, and f : Rd → Rd is locally-Lipschitz,

then a simple application of integration by parts shows,

E [〈G, f(G)〉] = E [divf(G)] . (14)

Moreover, by letting f vary across monomial functions, we can see that (14) completely deter-

mines the moments of G. Since the standard Gaussian is determined by its moments, it is the

only measure that satisfies (14).

Stein came up with the remarkable idea that this property is robust. Thus, if a measure µ

’approximately satisfies’ (14) it should be ’close’ to γd. Considerable work revolving around

Stein’s theory focused on making this idea quantitative. A recent approach, pioneered by the

seminal paper [68] of Chatterjee, replaced the right hand side of (14) by a more general first-

order differential operator, called a Stein kernel. A Stein kernel for a measure µ is defined as

measurable matrix valued map τ : Rn →Mn(R) which satisfies,∫
〈x, f(x)〉dµ(x) =

∫
〈τ(x), Df(x)〉HSdµ(x), (15)

where Df stands for the Jacobian matrix of f . Remark that in dimension 1, as long as µ has a

density ρ and a finite first moment, it is straightforward to verify that,

τ(x) =

∞∫
x

yρ(y)dy

ρ(y)
, (16)

is a Stein kernel for µ. Actually, it is the only function which satisfies (15). In higher dimen-

sions, the situation becomes more complicated. In many cases, there are different constructions

of Stein kernels which yield qualitatively different solutions to (15). Not only that, but it also

seems like a challenging task to produce a uniform criterion for determining the existence of

a Stein kernel. For example, as will be shown in Chapter 2, it is quite common for high-

dimensional singular measures to have Stein kernel.

Stein’s lemma is the key insight for the use of Stein kernels. According to the Lemma,

µ = γd if and only if the function τ(x) ≡ Id. Thus, in some sense, the deviation of τ from the

identity measures the distance of µ from the standard Gaussian. Led by this idea we define the

Stein discrepancy to the normal distribution as,

S(µ) := inf
τ

√∫
‖τ(x)− Id‖2

HS dµ(x),

where the infimum is taken over all Stein kernels of µ. By the above, S(µ) = 0 if and only

if µ = γ. Thus, while not strictly being a metric, the Stein discrepancy still serves as some
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notion of distance to the standard Gaussian. If X is a random vector in Rn, by a slight abuse of

notation we will also write S(X) for S(Law(X)).

Decay of Stein’s discrepancy along the CLT: Stein kernels exhibit several nice properties

which make their analysis tractable for normal approximations. Let X ∼ µ, an application of

the chain-rule shows that if τX is a Stein kernel of X and A is a linear operator with compatible

dimensions, a Stein kernel for AX is given by:

τAX(x) = AE [τ(X)|AX = x]AT (17)

(see [85, Section 3] for some examples). Also, it is not hard to see that, if {Xi}ni=1 are i.i.d. as µ

and X = (X1, ..., Xn), then a Stein kernel for X may be realized as an nd× nd block diagonal

matrix, with each main-diagonal block taken as τX . By combining the above constructions we

get that, if Sn = 1√
n

n∑
i=1

Xi, then

τSn(x) =
1

d

n∑
i=1

E [τX(Xi)|Sn = x] , (18)

is a Stein kernel for Sn.

Now, assume thatX is isotropic. By choosing the test function f to be linear in the definition

of the Stein kernel we may see that

E [τX(X)] = Cov(X) = Id. (19)

Thus, (τX(Xi)− Id) is a centered random variable, and the above observations show,

S2(Sn) ≤ E
[
‖τSn(Sn)− Id‖2

HS

]
= E

∥∥∥∥∥ 1

n

n∑
i=1

E [τX(Xi)− Id|Sn]

∥∥∥∥∥
2

HS


≤ 1

n2
E

∥∥∥∥∥
n∑
i=1

τX(Xi)− Id

∥∥∥∥∥
2

HS

 =
1

n
E
[
‖τX(X)− Id‖2

HS

]
,

where in the second inequality we have applied Jensen’s inequality and where we have used the

fact that (τX(Xi)− Id) are i.i.d. and centered for the last equality. By taking the infimum over

all Stein kernels, we get

S2(Sn) ≤ S2(X)

n
. (20)

Stein’s discrepancy as a distance: We now discuss the relations between Stein’s discrepancy

to other, more classical notions of distance. This notion has recently gained prominence in the

study of convergence rates along the high-dimensional central limit theorem (see [85,112,196]
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for several examples as well as the book [194]). This popularity stems, among others, from the

fact that the Stein’s discrepancy controls several other known distances.

First, by the Kantorovich-Rubinstein duality forW1 ( [240]) it is not hard to show that

W1(µ, γ) ≤ S(µ). (21)

For simplicity of exposition let us focus on the case d = 1, although all arguments may be

carried out in higher dimensions. Define the Ornstein-Uhlenbeck operator on an appropriate

subspace of L2(γ) by,

Lf(x) = f ′(x)− xf(x),

and for a fixed f , consider the Poisson equation,

Lhf (x) = f(x)− E [f(G)] , (22)

where we think about hf as the unknown function. If X ∼ µ and τ is a Stein kernel for µ, the

Kantorovich-Rubinstein duality implies,

W1(µ, γ) = sup
f is 1-Lipschitz

|E[f(X)]− E[f(G)]|

= sup
f is 1-Lipschitz

|E[Lhf (X)]|

= sup
f is 1-Lipschitz

∣∣E[h′f (X)]− E[Xhf (X)]
∣∣

= sup
f is 1-Lipschitz

∣∣E[h′f (X)]− E[τ(X)h′f (X)]
∣∣

≤
√
E[(1− τ(X))2] sup

f is 1-Lipschitz
‖h′f‖∞ = S(µ) sup

f is 1-Lipschitz
‖h′f‖∞,

where in the third equality we have applied (15) to the function hf . To bound ‖h′f‖∞ observe

that when f is a Lipschitz function it may be verified (see also [194, Proposition 3.5.1]) that the

solution to (21) is given by,

hf (x) = −
∞∫

0

e−t√
1− e−2t

E
[
f(e−tx+

√
1− e−2tG)G

]
dt.

In particular, if f is 1-Lipschitz and |f ′(x)| ≤ 1, then

|h′f (x)| =

∣∣∣∣∣∣
∞∫

0

e−2t

√
1− e−2t

E
[
f ′(e−tx+

√
1− e−2tG)G

]
dt

∣∣∣∣∣∣ ≤√E[G2]

∞∫
0

e−2t

√
1− e−2t

dt = 1.

Thus (21) is established.
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A more careful analysis and an integration along the Orenstein-Uhlenbeck semigroup pro-

duces the more remarkable fact that the same also holds for the quadratic Wasserstein distance

( [161, Proposition 3.1]),

W2
2 (µ, γ) ≤ S2(µ). (23)

In fact, by slightly changing the definition of the discrepancy, we may bound the Wasserstein

distance of any order. This is the content of Proposition 3.1 in [112] which shows that if τ is a

Stein kernel of µ, then,

Wm(µ, γ) ≤ Cm
m

√∫
‖τ(x)− Id‖mHS dµ(x),

where Cm > 0 depends only on m. In some cases, one may also compare relative entropy to

Stein’s discrepancy, which is the content of the so-called HSI inequality from [161]. According

to the inequality,

Ent(µ||γ) ≤ 1

2
S2(µ) log

(
1 +

I(µ||γ)

S2(µ)

)
,

where I(µ||γ) is the (relative) Fisher information of µ. Thus, showing a CLT holds with respect

to Stein’s discrepancy can imply an entropic CLT, provided that the Fisher information is finite.

Unfortunately, verifying that a measure has finite Fisher information is a non-trivial task in

high-dimensions (see Section 5 in [161] for further discussion). In Chapter 6 we revisit those

estimates. Among others, we give an alternative proof to (23) and also consider extensions of

the inequalities to non-Gaussian reference measures.

A quantitative central limit theorem: To demonstrate the usefulness of Stein kernels we

now establish a quantitative central limit theorem in dimension 1 for uniformly log-concave

measures. Thus, suppose that µ is a isotropic measure on R with density e−ϕ(x), which satisfies

ϕ(x)′′ ≥ σ, for some σ > 0. Suppose further that µ is symmetric, so its density is maximized

at the origin. In this case, for x > 0, the above condition implies ϕ(x)′ ≥ σx+ ϕ′(0) = σx.

Let x > 0 and consider the Stein kernel given by (16),

τ(x) =

∞∫
x

ye−ϕ(y)dy

e−ϕ(x)
≤

1
σ

∞∫
x

ϕ′(y)e−ϕ(y)dy

e−ϕ(x)
=

1

σ

1

e−ϕ(x)

∣∣∣∞
x
e−ϕ(y) =

1

σ
.

From symmetry we may conclude ‖τ‖∞ ≤ 1
σ

. So,

S2(µ) = Eµ
[
(τ − 1)2

]
≤ 2Eµ

[
τ 2
]

+ 2 ≤ 2

(
1

σ2
+ 1

)
.
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If {Xi}ni=1 are i.i.d. as µ and Sn := 1√
n

n∑
i=1

Xi. Then, from (20) and (23),

W2
2 (Sn, G) ≤ S2(Sn) ≤ S2(µ)

n
≤ 2

(
1
σ2 + 1

)
n

.

This shows a Berry-Esseen type bound with convergence rate 1√
n

. In Chapters 2 and 3 we

extend this result to much larger classes of measures and higher (even infinite) dimensions.

Notations and Terminology

We now introduce some of the common notations and definitions which are common to most

chapters. When relevant and necessary, specific chapters may include further definitions.

We usually work in Rd equipped with the Euclidean norm, which we denote by ‖·‖2 or

sometimes just ‖ · ‖. For a matrix A we denote its Hilbert-Schmidt norm by ‖A‖HS . This is the

norm induced by the Hilbert-Schmidt inner product 〈A,B〉HS := Tr
(
ABT

)
.

A measure µ on Rd is said to be log-concave if it is supported on some subspace of Rd and,

relative to the Lebesgue measure of that subspace, it has a density ρ, twice differentiable almost

everywhere, for which

−∇2 log(ρ(x)) � 0 for all x,

where ∇2 denotes the Hessian matrix, in the Alexandrov sense. If in addition there exists an

σ > 0 such that

−∇2 log(ρ(x)) � σId for all x,

we say that µ is σ-uniformly log-concave. The measure µ is called isotropic if it is centered and

its covariance matrix is the identity, i.e.,∫
Rd

xµ(dx) = 0 and
∫
Rd

x⊗ xµ(dx) = Id.

If ν is another measure on Rd and m > 0, the m-Wasserstein’s distance between µ and ν is

defined by

Wm(µ, ν) = m

√
inf
π

∫
‖x− y‖m2 dπ(x, y),

where the infimum is taken over all couplings π, of µ and ν. Another notion of distance is that

of relative entropy, which is given by

Ent(µ||ν) =

∫
log

(
dµ

dν

)
dµ.
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It is known that relative entropy bounds the quadratic Wasserstein distance to the the Gaus-

sian via Talagrand’s transportation-entropy inequality ( [229]) as well as controlling the total

variation distance through Pinsker’s inequality ( [86]). We also define the (relative) Fisher in-

formation as,

I(µ||ν) =

∫ ∥∥∥∥∇ log

(
dµ

dν

)∥∥∥∥2

dµ.

γd will always stand for the standard normal law on Rd with density

dγd
dx

(x) =
1

(2π)
n
2

e−
‖x‖22

2 .

We will sometime omit the subscript, when the dimension is obvious from the context.

Finally, as a convention, we use C,C ′, c, c′... to denote absolute positive constants whose

value might change between expressions. In case we want to signify that the constant might

depend on some parameter a, we will write Ca, C ′a.
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“Very simple was my explanation, and plausible enough–as most wrong theories are!”

- The Time Traveler

PART I

HIGH-DIMENSIONAL CENTRAL
LIMIT THEOREMS
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1
High-Dimensional Central Limit Theorems

via Martingale Embeddings

1.1 Introduction

LetX(1), . . . , X(n) be i.i.d. random vectors inRd. By the central limit theorem, it is well-known

that, under mild conditions, the sum 1√
n

∑n
i=1 X

(i) converges to a Gaussian. With d fixed, there

is an extensive literature showing that the distance from Gaussian under various metrics decays

as 1√
n

as n→∞, and this is optimal.

However, in high-dimensional settings, it is often the case that the dimension d is not fixed

but rather grows with n. It then becomes necessary to understand how the convergence rate

depends on dimension, and the optimal dependence here is not well understood. We present a

new technique for proving central limit theorems in Rd that is suitable for establishing quantita-

tive estimates for the convergence rate in the high-dimensional setting. The technique, which is

described in more detail in Section 1.1.1 below, is based on pathwise analysis: we first couple

the random vector with a Brownian motion via a martingale embedding. This gives rise to a

coupling between the sum and a Brownian motion for which we can establish bounds on the

concentration of the quadratic variation. We use a multidimensional version of a Skorokhod

embedding, inspired by a construction from [98], as a manifestation of the martingale embed-

ding.

21



Using our method, we prove new bounds on quadratic transportation (also known as “Kan-

torovich” or “Wasserstein”) distance in the CLT, and in the case of log-concave distributions, we

also give bounds for entropy distance. Recall thatW2(A,B) denotes the quadratic transporta-

tion distance between two d-dimensional random vectors A and B. As a first demonstration of

our method, we begin with an improvement to the best known convergence rate in the case of

bounded random vectors.

Theorem 1.1. Let X be a random d-dimensional vector. Suppose that E[X] = 0 and ‖X‖ ≤ β

almost surely for some β > 0. Let Σ = Cov(X), and let G ∼ N (0,Σ) be a Gaussian with

covariance Σ. If {X(i)}ni=1 are i.i.d copies of X and Sn = 1√
n

∑n
i=1 X

(i), then

W2(Sn, G) ≤ β
√
d
√

32 + 2 log2(n)√
n

.

Theorem 1.1 improves the result from [251] that gives a bound of order β
√
d logn√
n

under the

same conditions. It was noted in [251] that when X is supported on a lattice βZd, then the

quantityW2(Sn, G) is of order β
√
d√
n

. Thus, Theorem 1.1 is within a
√

log n factor of optimal.

When the distribution ofX is isotropic and log-concave, we can improve the bounds guaran-

teed by Theorem 1.1. In this case, however, a more general bound has already been established

in [85], see discussion below.

Theorem 1.2. Let X be a random d-dimensional vector. Suppose that the distribution of X is

log-concave and isotropic. Let G ∼ N (0, Id) be a standard Gaussian. If {X(i)}ni=1 are i.i.d

copies of X and Sn = 1√
n

n∑
i=1

X(i), then there exists a universal constant C > 0 such that, if

d ≥ 8,

W2(Sn, G) ≤ Cd1/2+od(1) ln(d)
√

ln(n)√
n

.

Remark 1.3. We actually prove the slightly stronger bound

W2(Sn, G) ≤ Cκd ln(d)
√
d ln(n)√

n
,

where

κd := sup
µ isotropic,
log-concave

∥∥∥∫
Rd

x1x⊗ xµ(dx)
∥∥∥
HS
, (1.1)

as defined in [97]. The recent advances towards the KLS conjecture, made by Chen in [72]

imply κd = O(dod(1)), leading to the bound in Theorem 1.2. If the thin-shell conjecture (see

[13], as well [40]) is true, then the bound is improved to κd = O(
√

ln(d)), which yields

W2(Sn, G) ≤ C
√
d ln(d)3 ln(n)√

n
.
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By considering, for example, a random vector uniformly distributed on the unit cube, one can

see that the above bound is sharp up to the logarithmic factors.

Remark 1.4. To compare with the previous theorem, note that if Cov(X) = Id, then E ‖X‖2 =

d. Thus, in applying Theorem 1.1 we must take β ≥
√
d, and the resulting bound is then of

order at least d
√

logn√
n

.

Next, we describe our results regarding convergence rate in entropy. As a warm-up, we

first use our method to recover the entropic CLT in any fixed dimension. In dimension one

this was first established by Barron, [24]. The same methods may also be applied to prove a

multidimensional analogue. See [43] for a more quantitative version of the theorem.

Theorem 1.5. Suppose that Ent (X||G) <∞. Then one has

lim
n→∞

Ent(Sn||G) = 0.

The next result gives the first non-asymptotic convergence rate for the entropic CLT, again

under the log-concavity assumption (other non-asymptotic results appear in previous works,

notably [85], but require additional assumptions; see below).

Theorem 1.6. Let X be a random d-dimensional vector. Suppose that the distribution of X is

log-concave and isotropic. Let G ∼ N (0, Id) be a standard Gaussian. If {X(i)}ni=1 are i.i.d

copies of X and Sn = 1√
n

n∑
i=1

X(i) then

Ent(Sn||G) ≤ Cd10(1 + Ent(X||G))

n
,

for a universal constant C > 0.

Our method also yields a different (and typically stronger) bound if the distribution is

strongly log-concave.

Theorem 1.7. Let X be a d-dimensional random vector with E[X] = 0 and Cov(X) = Σ.

Suppose further that X is 1-uniformly log concave (i.e. it has a probability density e−ϕ(x)

satisfying∇2ϕ � Id) and that Σ � σId for some σ > 0.

Let G ∼ N (0,Σ) be a Gaussian with the same covariance as X and let γ ∼ N (0, Id) be a

standard Gaussian. If {X(i)}ni=1 are i.i.d copies of X and Sn = 1√
n

n∑
i=1

X(i), then

Ent(Sn||G) ≤ 2 (d+ 2Ent (X||γ))

σ4n
.

Remark 1.8. The theorem can be applied when X is isotropic and σ-uniformly log concave for

some σ > 0. In this case, a change of variables shows that
√
σX is 1-uniformly log concave
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and has σId as a covariance matrix. Since relative entropy to a Gaussian is invariant under affine

transformations, if G ∼ N (0, Id) is a standard Gaussian, we get

Ent (Sn||G) = Ent
(√

σSn||
√
σG
)
≤ 2 (d+ 2Ent (

√
σX||G))

σ4n
.

1.1.1 An informal description of the method

Let Bt be a standard Brownian motion in Rd with an associated filtration Ft. The following

definition will be central to our method:

Definition 1.9. Let Xt be a martingale satisfying dXt = ΓtdBt for some adapted process Γt

taking values in the positive semi-definite cone and let τ be a stopping time. We say that the

triplet (Xt,Γt, τ) is a martingale embedding of the measure µ if Xτ ∼ µ.

Note that if Γt is deterministic, then Xt has a Gaussian law for each t. At the heart of our

proof is the following simple idea: Summing up n independent copies of a martingale embed-

ding of µ, we end up with a martingale embedding of µ∗n whose associated covariance process

has the form

√∑n
i=1

(
Γ

(i)
t

)2

. By the law of large numbers, this process is well concentrated

and thus the resulting martingale is close to a Brownian motion.

This suggests that it would be useful to couple the sum process
∑n

i=1X
(i)
t with the ”aver-

aged” process whose covariance is given by E

[√∑n
i=1

(
Γ

(i)
t

)2
]

(this process is a Brownian

motion up to deterministic time change). Controlling the error in the coupling naturally leads to

a bound on transportation distance. For relative entropy, we can reformulate the discrepancies

in the coupling in terms of a predictable drift and deduce bounds by a judicious application of

Girsanov’s theorem.

In order to derive quantitative bounds, one needs to construct a martingale embedding in

a way that makes the fluctuations of the process Γt tractable. The specific choices of Γt that

we consider are based on a construction introduced in [98]. This construction is also related

to the entropy minimizing process used by Föllmer ( [119, 120], see also Lehec [165]) and

to the stochastic localization which was used in [97]. Such techniques have recently gained

prominence and have been used, among other things, to improve known bounds of the KLS

conjecture [72,97,163], calculate large deviations of non-linear functions [99] and study tubular

neighborhoods of complex varieties [152].

The basic idea underlying the construction of the martingale is a certain measure-valued

Markov process driven by a Brownian motion. This process interpolates between a given mea-

sure and a delta measure via multiplication by infinitesimal linear functions. The Doob martin-

gale associated to the delta measure (the conditional expectation of the measure, based on the

past) will be a martingale embedding for the original measure. This construction is described

in detail in Subsection 1.2.3 below.
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1.1.2 Related work

Multidimensional central limit theorems have been studied extensively since at least the 1940’s

[33] (see also [37] and references therein). In particular, the dependence of the convergence

rate on the dimension was studied by Nagaev [188], Senatov [217], Götze [128], Bentkus [32],

and Chen and Fang [71], among others. These works focused on convergence in probabilities of

convex sets. We mention that in dimension 1, the picture is much clearer and that tight estimates

are known under various metrics ( [35, 41, 42, 108, 209, 210]).

More recently, dependence on dimension in the high-dimensional CLT has also been studied

for Wishart matrices (Bubeck and Ganguly [58], Eldan and Mikulincer [102]), maxima of sums

of independent random vectors (Chernozhukov, Chetverikov, and Kato [73]), and transporta-

tion distance ( [251]). As mentioned earlier, Theorem 1.1 is directly comparable to an earlier

result from [251], improving on it by a factor of
√

log n (see also the earlier work [236]). We

refer to [251] for a discussion of how convergence in transportation distance may be related to

convergence in probabilities of convex sets.

As mentioned above, Theorem 1.2 is not new, and follows from a result of Courtade, Fathi

and Pananjady [85, Theorem 4.1]. Their technique employs Stein’s method (see also [47], for

a different approach using Stein’s method) in a novel way which is also applicable to entropic

CLTs (see below). In a subsequent work [112], similar bounds are derived for convergence in

the p’th-Wasserstein transportation metric.

Regarding entropic CLTs, it was shown by Barron [24] that convergence occurs as long

as the distribution of the summand has finite relative entropy (with respect to the Gaussian).

However, establishing explicit rates of convergence does not seem to be a straightforward task.

Even in the restricted setting of log-concave distributions, not much is known. One of the only

quantitative results is Proposition 4.3 in [85], which gives near optimal convergence, provided

that the distribution has finite Fisher information. We do not know of any results prior to Theo-

rem 1.6 which give entropy distance bounds of the form poly(d)
n

to a sum of general log-concave

vectors.

A one-dimensional result was established by Artstein, Ball, Barthe, and Naor [17] and in-

dependently by Barron and Johnson [145], who showed an optimal O(1/n) convergence rate

in relative entropy for distributions having a spectral gap (i.e. satisfying a Poincaré inequality).

This was later improved by Bobkov, Chistyakov, and Götze [43,44], who derive an Edgeworth-

type expansion for the entropy distance which also applies to higher dimensions. However,

although their estimates contain very precise information as n → ∞, the given error term is

only asymptotic in n and no explicit dependence on the measure or on the dimension is given

(in fact, the dependence derived from the method seems to be exponential in the dimension d).

A related “entropy jump” bound was proved by Ball and Nguyen [21] for log-concave

random vectors in arbitrary dimensions (see also [20]). Essentially, the bound states that for

two i.i.d. random vectors X and Y , the relative entropy Ent
(
X+Y√

2

∣∣∣∣∣∣G) is strictly less than
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Ent(X||G), where the amount is quantified by the spectral gap for the distribution of X . Re-

peated application gives a bound for entropy of sums of i.i.d. log-concave vectors in any di-

mension, but the bound is far from optimal. It is not apparent to us whether the method of [21]

can be extended to provide quantitative estimates for convergence in the entropic CLT.

1.1.3 Notation

For a positive semi-definite symmetric matrix A we denote by
√
A the unique positive semi-

definite matrix B, for which the relation B2 = A holds. For symmetric matrices A and B we

use A � B to signify that B−A is a positive semi-definite matrix. By A† we denote the pseudo

inverse of A. Put succinctly, this means that in A† every non-zero eigenvalue of A is inverted.

For a random matrix A, we will write E [A]†, for the pseudo inverse of its expectation.

If Bt is the standard Brownian motion in Rd then for any adapted process Ft we denote by
t∫

0

FsdBs, the Itô stochastic integral. We refer by Itô’s isometry to the fact

E

∥∥∥∥∥∥
t∫

0

FsdBs

∥∥∥∥∥∥
2 =

t∫
0

E
[
‖Fs‖2

HS

]
ds

when Ft is adapted to the natural filtration of Bt.

µ will always stand for a probability measure. To avoid confusion, when integrating with

respect to µ, on Rd, we will use the notation
∫
. . . µ(dx). For a measure-valued stochastic

process µt, the expression dµt refers to the stochastic derivative of the process.

1.2 Obtaining convergence rates from martingale embeddings

Suppose that we are given a measure µ and a corresponding martingale embedding (Xt,Γt, τ).

The goal of this section is to express bounds for the corresponding CLT convergence rates (of

the sum of independent copies of µ-distributed random vectors) in terms of the behavior of the

process Γt and τ .

Throughout this section we fix a measure µ on Rd whose expectation is 0, a random vector

X ∼ µ, and a corresponding Gaussian G ∼ N (0,Σ), where Cov (X) = Σ. Also, the sequence

{X(i)}∞i=1 will denote independent copies of X , and we write Sn := 1√
n

n∑
i=1

X(i) for their nor-

malized sum. Finally, we use Bt to denote a standard Brownian motion on Rd adapted to a

filtration Ft.

1.2.1 A bound for Wasserstein-2 distance

The following is our main bound for convergence in Wasserstein distance.
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Theorem 1.10. Let Sn andG be defined as above and let (Xt,Γt, τ) be a martingale embedding

of µ. Set Γt = 0 for t > τ , then

W2
2 (Sn, G) ≤

∞∫
0

min

(
1

n
Tr
(
E
[
Γ4
t

]
E[Γ2

t ]
†) , 4Tr

(
E
[
Γ2
t

]))
dt.

To illustrate how such a result might be used, let us assume, for simplicity, that Γt ≺ kId

almost-surely for some k > 0 and that τ has a sub-exponential tail, i.e., there exist positive

constants C, c > 0 such that for any t > 0,

P(τ > t) ≤ Ce−ct. (1.2)

Under these assumptions,

W2
2 (Sn, G) ≤

∞∫
0

min

(
1

n
Tr
(
E
[
Γ4
t

]
E[Γ2

t ]
†) , 4k2dP (τ > t)

)
dt

≤ dk2

log(n)
c∫

0

1

n
dt+ 4Cdk2

∞∫
log(n)
c

e−ctdt =
d log(n)k2

cn
+

4Cdk2

n
.

Towards the proof, we will need the following technical lemma.

Lemma 1.11. Let A,B be positive semi-definite matrices with ker(A) ⊂ ker(B). Then,

Tr

((√
A−
√
B
)2
)
≤ Tr

(
(A−B)2A†

)
.

Proof. Since A and B are positive semi-definite, ker
(√

A+
√
B
)
⊂ ker

(√
A−
√
B
)

.Thus,

we have that

√
A−
√
B =

(√
A−
√
B
)(√

A+
√
B
)(√

A+
√
B
)†

(1.3)

=
(
A−B +

[√
A,
√
B
])(√

A+
√
B
)†
.

So,

Tr

((√
A−
√
B
)2
)

= Tr

(((
A−B +

[√
A,
√
B
])(√

A+
√
B
)†)2

)
.

Note that for any symmetric matrices X and Y , by the Cauchy-Schwartz inequality,

Tr
(
(XY )2

)
≤ Tr (XYXY ) ≤

√
Tr (XY Y X) · Tr (Y XXY ) = Tr

(
X2Y 2

)
.
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Applying this to the above equation shows

Tr

((√
A−
√
B
)2
)
≤ Tr

((
A−B +

[√
A,
√
B
])2

((√
A+
√
B
)†)2

)
.

Note that the commutator
[√

A,
√
B
]

is an anti-symmetric matrix, so that (A−B)
[√

A,
√
B
]
+[√

A,
√
B
]

(A−B) is anti-symmetric as well. Thus, for any symmetric matrix C, we have that

Tr
((

(A−B)
[√

A,
√
B
]

+
[√

A,
√
B
]

(A−B)
)
C
)

= 0.

Also, since all eigenvalues of anti-symmetric matrices are purely imaginary, the square of such

matrices must be negative definite. And again, for any symmetric positive definite matrix C,

it holds that C1/2
[√

A,
√
B
]2

C1/2 is negative definite and Tr

([√
A,
√
B
]2

C

)
≤ 0. Using

these observations we obtain

Tr

((
A−B +

[√
A,
√
B
])2

((√
A+
√
B
)†)2

)
≤ Tr

(
(A−B)2

((√
A+
√
B
)†)2

)
.

Finally, if C,X, Y are positive definite matrices with X � Y then C1/2(Y − X)C1/2 is pos-

itive definite which shows Tr (CX) ≤ Tr (CY ). The assumption ker(A) ⊂ ker(B) implies((√
A+
√
B
)†)2

� A†, which concludes the claim by

Tr

(
(A−B)2

((√
A+
√
B
)†)2

)
≤ Tr

(
(A−B)2A†

)

Proof of Theorem 1.10. Recall that (Xt,Γt, τ) is a martingale embedding of µ. Let
(
X

(i)
t ,Γ

(i)
t , τ

(i)
)

be independent copies of the embedding. We can always set Γ
(i)
t = 0 whenever t > τ (i), so that

∞∫
0

Γ
(i)
t dB

(i)
t ∼ µ. Define Γ̃t =

√
1
n

n∑
i=1

(
Γ

(i)
t

)2

. Our first goal is to show

W2
2 (G,Sn) ≤

∞∫
0

E

[
Tr

((
Γ̃t −

√
E [Γ2

t ]

)2
)]

dt. (1.4)

The theorem will then follow by deriving suitable bounds for E
[
Tr

((
Γ̃t −

√
E [Γ2

t ]
)2
)]

us-

ing Lemma 1.11. Consider the sum 1√
n

n∑
i=1

∞∫
0

Γ
(i)
t dB

(i)
t , which has the same law as Sn. It may
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be rewritten as

Sn =

∞∫
0

Γ̃tdB̃t,

where dB̃t := 1√
n
Γ̃†t
∑

i Γ
(i)
t dB

(i)
t is a martingale whose quadratic variation matrix has deriva-

tive satisfying
d

dt
[B̃]t =

1

n

∑
i

Γ̃†t

(
Γ

(i)
t

)2

Γ̃†t � Id. (1.5)

(in fact, as long as Rd is spanned by the images of Γ
(i)
t , this process is a Brownian motion). We

may now decompose Sn as

Sn =

∞∫
0

√
E
[
Γ̃2
t

]
dB̃t +

∞∫
0

(
Γ̃t −

√
E
[
Γ̃2
t

])
dB̃t. (1.6)

Observe that G :=
∞∫
0

√
E[Γ̃2

t ]dB̃t has a Gaussian law and that E[Γ̃2
t ] = E[Γ2

t ]. By applying Itô’s

isometry, we may see that G has the “correct” covariance in the sense that

Cov(G) = E

 ∞∫
0

√
E[Γ̃2

t ]dB̃t

⊗2 = E

 ∞∫
0

Γ2
tdt

 = E

 ∞∫
0

ΓtdBt

⊗2 = Cov(X).

The decomposition (1.6) induces a natural coupling betweenG and Sn, which shows, by another

application of Itô’s isometry, that

W2
2 (G,Sn) ≤ E

∥∥∥∥∥∥
∞∫

0

(
Γ̃t −

√
E[Γ2

t ]

)
dB̃t

∥∥∥∥∥∥
2 (1.5)
≤ Tr

E
 ∞∫

0

(
Γ̃t −

√
E[Γ2

t ]

)2

dt


=

∞∫
0

E

[
Tr

((
Γ̃t −

√
E [Γ2

t ]

)2
)]

dt,

where the last equality is due to Fubini’s theorem. Thus, (1.4) is established. Since
(

Γ̃t −
√
E [Γ2

t ]
)2

�
2
(

Γ̃2
t + E[Γ2

t ]
)

, we have

Tr

(
E

[(
Γ̃t −

√
E [Γ2

t ]

)2
])
≤ 4Tr

(
E[Γ2

t ]
)
. (1.7)

To finish the proof, write Ut := 1
n

n∑
i=1

(
Γ

(i)
t

)2

, so that Γ̃t =
√
Ut. Since Γt is positive semi-
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definite, it is clear that ker (E [Γ2
t ]) ⊂ ker(Ut). By Lemma 1.11,

E

[
Tr

((√
Ut −

√
E [Γ2

t ]

)2
)]
≤Tr

(
E
[(
Ut − E

[
Γ2
t

])2
]
E
[
Γ2
t

]†)
=

1

n2
Tr

(
n∑
i=1

E

[((
Γ

(i)
t

)2

− E
[
Γ2
t

])2
]
E
[
Γ2
t

]†)
=

1

n
Tr
((
E
[
Γ4
t

]
− E

[
Γ2
t

]2)E [Γ2
t

]†)
≤ 1

n
Tr
(
E
[
Γ4
t

]
E
[
Γ2
t

]†)
,

where we have used the fact E
[(

Γ
(i)
t

)2
]

= E [Γ2
t ] in the second equality. Combining the last

inequality with (1.7) and (1.4) produces the required result.

1.2.2 A bound for the relative entropy

As alluded to in the introduction, in order to establish bounds on the relative entropy we will use

the existence of a martingale embedding to construct an Itô process whose martingale part has a

deterministic quadratic variation. This will allow us to relate the relative entropy to a Gaussian

with the norm of the drift term through the use of Girsanov’s theorem. As a technicality, we

require the stopping time associated to the martingale embedding to be constant. Our main

bound for the relative entropy reads,

Theorem 1.12. Let (Xt,Γt, 1) be a martingale embedding of µ. Assume that for every 0 ≤
t ≤ 1, E [Γt] � σtId � 0 and that Γt is invertible a.s. for t < 1. Then we have the following

inequalities:

Ent(Sn||G) ≤ 1

n

1∫
0

E
[
Tr
(

(Γ2
t − E [Γ2

t ])
2
)]

(1− t)2σ2
t

 1∫
t

σ−2
s ds

 dt,

and

Ent(Sn||G) ≤
1∫

0

Tr

(
E [Γ2

t ]− E
[
Γ̃t

]2
)

(1− t)2

 1∫
t

σ−2
s ds

 dt,

where

Γ̃t =

√√√√ 1

n

n∑
i=1

(
Γ

(i)
t

)2

and Γ
(i)
t are independent copies of Γt.
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The theorem relies on the following bound, whose proof is postponed to the end of the

subsection.

Lemma 1.13. Let Γt be an Ft-adapted matrix-valued processes and let F : R × Rd → Rd×d

be almost surely invertible and locally Lipschitz. Denote Ft(x) := F (t, x) and let Xt,Mt be

defined by

Xt =

∫ t

0

ΓsdBs and Mt =

∫ t

0

Fs(Ms)dBs.

Define the process Yt by

Yt =

t∫
0

Fs(Ys)dBs +

t∫
0

s∫
0

Γr − Fr(Yr)
1− r dBrds.

Then,

Ent (X1||M1) ≤ E

 1∫
0

1∫
s

∥∥∥∥F−1
t (Yt)

Γs − Fs(Ys)
1− s

∥∥∥∥2

HS

dtds

 .
Note that if the process Ft is deterministic, i.e. it is a constant function, then M1 has a

Gaussian law, so that the lemma can be used to bound the relative entropy of X1 with respect to

a Gaussian.

Proof of Theorem 1.12. Let (X
(i)
t ,Γ

(i)
t , 1) be independent copies of the martingale embedding.

Consider the sum process X̃t = 1√
n

n∑
i=1

X
(i)
t , which satisfies X̃t =

t∫
0

Γ̃sdB̃s where we define, as

in the proof of Theorem 1.10,

Γ̃t :=

√√√√ 1

n

n∑
i=1

(
Γ

(i)
t

)2

and dB̃t =
1√
n

Γ̃−1
t

∑
Γ

(i)
t dB

(i)
t .

By assumption Γ̃t is invertible, which makes B̃t a Brownian motion. In this case, (X̃t, Γ̃t, 1) is

a martingale embedding for the law of Sn. For the first bound, consider the process

Mt =

∫ t

0

√
E [Γ2

s]dB̃s.

By Itô’s isometry one has M1 ∼ N (0,Σ). Also, by Jensen’s inequality√
E [Γ2

t ] � E [Γt] � σtId.

Using this observation and substituting
√
E [Γ2

t ] for a constant function Ft in Lemma 1.13

yields,

Ent (Sn‖G) ≤
1∫

0

E

∥∥∥∥∥ Γ̃t −
√
E [Γ2

t ]

1− t

∥∥∥∥∥
2

HS

 1∫
t

σ−2
s ds

 dt. (1.8)
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With the use of Lemma 1.11 we obtain

E
∥∥∥∥Γ̃t −

√
E [Γ2

t ]

∥∥∥∥2

HS

= E

[
Tr

((
Γ̃t −

√
E [Γ2

t ]

)2
)]

≤ E

Tr

( 1

n

n∑
i=1

(
Γ

(i)
t

)2

− E
[
Γ2
t

])2

E
[
Γ2
t

]−1


≤ 1

nσ2
t

E
[
Tr
((

Γ2
t − E

[
Γ2
t

])2
)]
.

Plugging the above into (1.8) shows the first bound. To see the second bound, we define a

process M ′
t , which is similar to Mt, and is given by the equation

M ′
t :=

∫ t

0

E
[
Γ̃s

]
dB̃s.

Let Gn denote a Gaussian which is distributed as M ′
1. For any s, we now have the following

Cauchy-Schwartz type inequality

n

(
n∑
i=1

(
Γ(i)
s

)2

)
�
(

n∑
i=1

Γ(i)
s

)2

.

Since the square root is monotone with respect to the order on positive definite matrices, this

implies

E
[
Γ̃s

]
� 1

n
E

[
n∑
i=1

Γ(i)
s

]
� σsId.

Thus,

Ent(Sn||Gn) ≤ E

 1∫
0

1∫
t

∥∥∥∥∥∥E
[
Γ̃s

]−1 Γ̃t − E
[
Γ̃t

]
1− t

∥∥∥∥∥∥
2

HS

dsdt


≤

1∫
0

E


∥∥∥∥∥∥

Γ̃t − E
[
Γ̃t

]
1− t

∥∥∥∥∥∥
2

HS


 1∫

t

σ−2
s ds

 dt

=

1∫
0

Tr

(
E [Γ2

t ]− E
[
Γ̃t

]2
)

(1− t)2

 1∫
t

σ−2
s ds

 dt.

Since Cov(G) = Cov(Sn), it is now easy to verify that Ent (Sn||G) ≤ Ent (Sn||Gn), which

concludes the proof.

A key component in the proof of the theorem lies in using the norm of an adapted process
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in order to bound the relative entropy. The following lemma embodies this idea. Its proof is

based on a straightforward application of Girsanov’s theorem. We provide a sketch and refer the

reader to [165], where a slightly less general version of this lemma is given, for a more detailed

proof.

Lemma 1.14. Let F : R × Rd → Rd×d be almost surely invertible and locally Lipschitz.

Denote Ft(x) := F (t, x) and let Mt =
t∫

0

Fs(Ms)dBs. For ut, an adapted process, set Yt :=

t∫
0

Fs(Ys)dBs +
t∫

0

usds. Then

Ent (Y1||M1) ≤ 1

2

1∫
0

E
[∥∥F−1

t (Yt)ut
∥∥2
]
dt.

Proof. Since Mt is an Itô diffusion, by Girsanov’s theorem ( [199, Theorem 8.6.5]), the density

of {Yt}t∈[0,1] with respect to that of {Mt}t∈[0,1] on the space of paths is given by

E := exp

− 1∫
0

Ft(Yt)
−1utdBt −

1

2

1∫
0

∥∥Ft(Yt)−1ut
∥∥2
dt

 .

If f is the density of Y1 with respect to M1, this implies

1 = E [f(Y1)E ] .

By Jensen’s inequality

0 = ln (E [f(Y1)E ]) ≥ E [ln (f(Y1)E)] = E [ln(f(Y1))] + E [ln(E)] .

But,

E [ln(E)] = −1

2

1∫
0

E
[∥∥F−1

t (Yt)ut
∥∥2
]
dt,

and

E [ln(f(Y1))] = Ent(Y1||M1),

which concludes the proof.

The proof of Lemma 1.13 now amounts to invoking the above bound with a suitable con-

struction of the drift process ut.
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Proof of Lemma 1.13. By defintion of the process Yt, we have the following equality

Y1 =

1∫
0

Ft(Yt)dBt +

1∫
0

t∫
0

Γs − Fs(Ys)
1− s dBsdt =

1∫
0

Ft(Yt)dBt +

1∫
0

(Γt − Ft(Yt)) dBt = X1,

(1.9)

where we have used Fubini’s theorem in the penultimate equality. Now, consider the adapted

process

ut =

t∫
0

Γs − Fs(Ys)
1− s dBs,

so that,

dYt = Ft(Yt)dBt + utdt.

Applying Lemma 1.14 and using Itô’s isometry, we get

Ent(X1||M1) ≤
1∫

0

E
[∥∥F−1

t (Yt)ut
∥∥2
]
dt =

1∫
0

E

∥∥∥∥∥∥
t∫

0

F−1
t (Yt)

Γs − Fs(Ys)
1− s dBs

∥∥∥∥∥∥
2 dt

= E

 1∫
0

t∫
0

∥∥∥∥F−1
t (Yt)

Γs − Fs(Ys)
1− s

∥∥∥∥2

HS

dsdt


= E

 1∫
0

1∫
s

∥∥∥∥Ft(Yt)−1 Γs − Fs(Ys)
1− s

∥∥∥∥2

HS

dtds

 ,
where last equality follows from another use of Fubini’s theorem.

1.2.3 A stochastic construction

In this section we introduce the main construction used in our proofs, a martingale process

which meets the assumptions of Theorems 1.10 and 1.12. The construction in the next propo-

sition is based on the Skorokhod embedding described in [98]. Most of the calculations in this

subsection are very similar to what is done in [98], except that we allow some inhomogeneity in

the quadratic variation according to the function Ct below. In particular, Ct will be a symmetric

matrix almost surely, and we will denote the space of d× d symmetric matrices by Symd.

Proposition 1.15. Let µ be a probability measure on Rd with smooth density and bounded

support. For a probability measure-valued process µt, let

at =

∫
Rd
xµt(dx), At =

∫
Rd

(x− at)⊗2µt(dx)

denote its mean and covariance.
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Let C : R× Symd → Symd be a continuous function. Then, we can construct µt so that the

following properties hold:

1. µ0 = µ,

2. at is a stochastic process satisfying dat = AtC(t, A†t)dBt, where Bt is a standard Brow-

nian motion on Rd, and

3. For any continuous and bounded ϕ : Rd → R,
∫
Rd ϕ(x)µt(dx) is a martingale.

Remark 1.16. We will be mainly interested in situations where µt converges almost surely to a

point mass in finite time. In this case, we obtain a martingale embedding (at, AtC(t, A†t), τ) for

µ, where τ is the first time that µt becomes a point mass.

In the sequel, we abbreviate Ct := C(t, A†t). We first give an informal description of how

µt+ε is constructed from µt for ε → 0. Consider a stochastic process {Xs}0≤s≤1 in which we

first sample X1 ∼ µt and then set

Xs = (1− s)at + sX1 + C−1
t Bs,

where Bs is a standard Brownian bridge. We can write Xε = at +
√
εC−1

t Z, where Z is close

to a standard Gaussian. We then take µt+ε to be the conditional distribution of X1 given Xε.

This immediately ensures that property 3 holds and that at is a martingale.

It remains to see why property 2 holds. A direct calculation with conditioned Brownian

bridges gives a first-order approximation

µt+ε(dx) ∝ e−
1
2

(
√
εC−1

t Z−ε(x−at))TC2
t (
√
εC−1

t Z−ε(x−at))µt(dx)

∝ e
√
ε〈CtZ,x−at〉+O(ε)µt(dx)

≈ (1 +
√
ε〈CtZ, x− at〉)µt(dx).

Then, to highest order, we have

at+ε − at ≈
√
ε

∫
Rd
〈CtZ, x− at〉(x− at)µt(dx) =

√
εAtCtZ,

which translates into property 2 as ε→ 0.

Observe that the procedure outlined above yields measures µt that have densities which are

proportional to the original density µ times a Gaussian density. (This applies at least when At
is non-degenerate; something similar also holds when At is degenerate, as we will see shortly.)

Let us now perform the construction formally. We will proceed by iterating the following

preliminary construction, which handles the case when At remains non-degenerate.

Lemma 1.17. Let µ be a measure on Rd with smooth density and bounded support, and let

C : R× Symd → Symd be a continuous map. Then, there is a measure-valued process µt and
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a stopping time T such that µt satisfies the properties in Proposition 1.15 for t < T and the

affine hull of the support of µT has dimension strictly less than d. Moreover, if µT is considered

as a measure on this affine hull, it has a smooth density.

Proof. We will construct a (Rd×Symd)-valued stochastic process (ct, Σ̃t) started at (c0, Σ̃0) =

(0, Id). Let us write

Qt(x) =
1

2

〈
x− ct, Σ̃−1

t (x− ct)
〉
,

and let µ̃ be the probability measure satisfying dµ̃
dµ

(x) ∝ e
1
2
‖x‖2 . We will then take µt to be

µt(dx) = Ft(x)µ̃(dx), where

Ft(x) =
1

Zt
e−Qt(x), Zt =

∫
Rd
e−Qt(x)µ̃(dx).

Note that since Σ̃0 = Id, we have µ0 = µ.1

In order to specify the process, it remains to construct (ct, Σ̃t). We take it to be the solution

to the SDE

dct = Σ̃tCtdBt + Σ̃tC
2
t (at − ct)dt, dΣ̃t = −Σ̃tC

2
t Σ̃tdt.

Note that the coefficients of this SDE are continuous functions of (ct, Σ̃t) so long as Σ̃t � 0. By

standard existence and uniqueness results, this SDE has a unique solution up to a stopping time

T (possibly T = ∞), at which point At (and hence Σ̃t) becomes degenerate. Observe that, for

every t, Σ̃t � Id and so, the matrix process is continuous on the interval [0, T ].

By a limiting procedure, it is easy to see that µT has a smooth density when considered as a

measure on the affine hull of its support. (Indeed, its density is proportional to the conditional

density of µ̃ times a Gaussian density.) It remains to verify that µt is a martingale and dat =

AtCtdBt.

By direct calculation, we have

d(Σ̃−1
t ) = C2

t dt

d(Σ̃−1
t ct) = C2

t ctdt+ C2
t (at − ct)dt+ CtdBt

= C2
t atdt+ CtdBt

dQt(x) =

〈
x,

(
1

2
C2
t x− C2

t at

)
dt− CtdBt

〉
d(e−Qt(x)) = −e−Qt(x)dQt(x) +

1

2
e−Qt(x)d[Qt(x)]

= e−Qt(x)
〈
x,CtdBt + C2

t atdt
〉

1Conceptually, one can replace all instances of µ̃ with µ if we think of the initial value Σ̃0 as being an “infinite”
multiple of identity. However, to avoid issues with infinities, we have expressed things in terms of µ̃ instead.
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Integrating against µ̃(dx), we obtain

dZt = Zt
〈
at, CtdBt + C2

t atdt
〉

dZ−1
t = − 1

Z2
t

dZt +
1

Z3
t

d[Zt] =
1

Zt
〈at,−CtdBt〉

dFt(x) = e−Qt(x)dZ−1
t + Z−1

t d(e−Qt(x)) + d[Z−1
t , e−Qt(x)]

= Ft(x) · 〈x− at, CtdBt〉.

Thus, Ft(x) is a martingale for each fixed x, and furthermore,

dat = d

∫
Rd
xµt(dx) =

∫
Rd
xdµt(dx) =

∫
Rd
x(x− at)Ctµt(dx)dBt = AtCtdBt.

Proof of Proposition 1.15. We use the process given by Lemma 1.17, which yields a stopping

time T1 and a measure µT1 with a strictly lower-dimensional support. If µT is a point mass, then

we set µt = µT for all t ≥ T .

Otherwise, by the smoothness properties of µT1 guaranteed by Lemma 1.17, we can recur-

sively apply Lemma 1.17 again on µT1 conditioned on the affine hull of its support. Repeating

this procedure at most d times gives us the desired process.

1.2.4 Properties of the construction

We record here various formulas pertaining to the quantities at,At, and µt constructed in Propo-

sition 1.15.

Proposition 1.18. Let µ, Ct, and µt be as in Proposition 1.15. Then, there is a Symd-valued

process {Σt}t>0 satisfying the following:

• For all t, there is an affine subspace L = Lt ⊂ Rd and a Gaussian measure γt on Rd,
supported on L, with covariance Σt such that µt is absolutely continuous with respect to

γt, and
dµt
dγt

(x) ∝ µ(x), ∀x ∈ L.

• Σt is continuous and for almost every t obeys the differential equation

d

dt
Σt = −ΣtC

2
t Σt.

• limt→0+ Σ−1
t = 0.
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Proof. For 1 ≤ k ≤ d, let Tk denote the first time the measure µt is supported in a (d − k)-

dimensional affine subspace, and denote by Lt the affine hall of the support of µt. We will define

Σt inductively for each interval [Tk−1, Tk]. Recall from the proof of Proposition 1.15 that µt is

constructed by iteratively applying Lemma 1.17 to affine subspaces of decreasing dimension

d, d−1, d−2, . . . , 1. Let Σ̃k,t denote the quantity Σ̃t, from the k-th application of Lemma 1.17,

so that Σ̃k,t is a linear operator on the subspace LTk .

For the base case 0 < t ≤ T1, take Σt = (Σ̃−1
0,t − Id)

−1. A straightforward calculation shows

that over this time interval, dµt
dµ

is proportional to the density of a Gaussian with covariance Σt.

Note that since Σ̃−1
0,0 = Id, we also have limt→0+ Σ−1

t = 0.

Now suppose that Σt has been defined up until time Tk; we will extend it to time Tk+1. Let

Lk denote the affine hull of the support of µTk , so that dim(Lk) = d− k (if dim(Lk) < d− k,

then we simply have Tk+1 = Tk). Then, for 0 ≤ t ≤ Tk+1 − Tk, we may set

ΣTk+t :=
(

Σ̃−1
k,t + Σ−1

Tk
− Id

)−1

,

where the quantities involved are matrices over the subspace parallel to Lk but may also be

regarded as degenerate bilinear forms in the ambient space Rd. First, observe that continuity of

the processes Σ̃k,t implies the same for Σt. Once again, a straightforward calculation shows that

for Tk ≤ t < Tk+1, dµt
dµ

is proportional to the density of a Gaussian with covariance Σt, where

we view µt and µ as densities on Lk (for µ, we take its conditional density on Lk).

It remains only to show that Σt satisfies the required differential equation. From our con-

struction, we see that Σt always takes the form
(

Σ̃−1
t −H

)−1

, where H � Id and

d

dt
Σ̃t = −Σ̃tC

2
t Σ̃t.

Then, we have

d

dt
Σt = −

(
Σ̃−1
t −H

)−1
(
d

dt
Σ̃−1
t

)(
Σ̃−1
t −H

)−1

= −Σt

(
−Σ̃−1

t

(
d

dt
Σ̃t

)
Σ̃−1
t

)
Σt

= −ΣtC
2
t Σt,

as desired.

Proposition 1.19. dAt =
∫
Rd

(x− at)⊗3µt(dx)CtdBt − AtC2
tAtdt

Proof. We consider the Doob decomposition of At = Mt + Et, where Mt is a local martingale

and Et is a process of bounded variation. By the previous two propositions and the definition
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of At, we have on one hand

dAt = d

∫
Rd

x⊗2µt(dx)− da⊗2
t = d

∫
Rd

x⊗2µt(dx)− at ⊗ dat − dat ⊗ at − AtC2
tAtdt.

Clearly the first 3 terms are local martingales, which shows, by the uniqueness of the Doob

decomposition, dEt = −AtC2
tAtdt. On the other hand, one may also rewrite the above as

dAt =d

∫
Rd

(x− at)⊗2µt(dx) =

∫
Rd

d
(
(x− at)⊗2µt(dx)

)
=−

∫
Rd

dat ⊗ (x− at)µt(dx)−
∫
Rd

(x− at)⊗ datµt(dx) +

∫
Rd

(x− at)⊗2dµt(dx)

− 2

∫
Rd

(x− at)⊗ d[at, µt(dx)]t +

∫
Rd

d[at, at]tµt(dx).

Note that the first 2 terms are equal to 0, since, by definition of at,∫
Rd

dat ⊗ (x− at)µt(dx) = dat ⊗
∫
Rd

(x− at)µt(dx) = 0.

Also, the last 2 terms are clearly of bounded variation, which shows

dMt =

∫
Rd

(x− at)⊗2dµt(dx) =

∫
Rd

(x− at)⊗3Ctµt(dx)dBt.

Define the stopping time τ = inf{t|At = 0}. Then, at time τ , µτ is just a delta mass located

at aτ and µs = µτ for every s ≥ τ . A crucial is observation is

Proposition 1.20. Suppose that there exists constants t0 ≥ 0 and c > 0 such that a.s. one of

the following happens

1. for every t0 < t < τ , Tr (AtC
2
tAt) > c,

2.
t0∫
0

λmin (C2
t ) dt =∞, where λmin (C2

t ) is the minimal eigenvalue of C2
t ,

then τ is finite a.s. and in the second case τ ≤ t0. Moreover, if τ is finite a.s. then aτ has the

law of µ.

Proof. Consider the process Rt = At +
t∫

0

AsC
2
sAsds. For the first case, the previous propo-

sition shows that the real-valued process Tr (Rt) a positive local martingale; hence, a super-

martingale. By the martingale convergence theorem Tr (Rt) converges to a limit almost surely.
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By our assumption, if τ =∞ then

∞∫
0

Tr(AtC
2
tAt)dt ≥

∞∫
t0

Tr(AtC
2
tAt)dt ≥

∞∫
t0

cdt =∞.

This would imply that lim
t→∞

Tr(At) = −∞ which clearly cannot happen.

For the second case, under the event {τ > t0}, by continuity of the process At there exists

a > 0 such that for every t ∈ [0, t0], there is a unit vector vt ∈ Rd for which 〈vt, Atvt〉 ≥ a. We

then have,

t0∫
0

Tr(AtC
2
tAt)dt ≥

t0∫
0

〈Atvt, C2
tAtvt〉dt ≥ a2

t0∫
0

λmin(C2
t )dt =∞,

which implies lim
t→t0

Tr(At) = −∞. Again, this cannot happen and so P(τ > t0) = 0.

To understand the law of aτ , let ϕ : Rd → R be any continuous bounded function. By Prop-

erty 3 of Proposition 1.15
∫
Rd
ϕ(x)µt(dx) is a martingale. We claim that it is bounded. Indeed,

observe that since µt is a probability measure for every t, then∫
Rd

ϕ(x)µt(dx) ≤ max
x
|ϕ(x)|.

τ is finite a.s., so by the optional stopping theorem for continuous time martingales ( [199]

Theorem 7.2.4)

E

∫
Rd

ϕ(x)µτ (dx)

 =

∫
Rd

ϕ(x)µ(dx).

Since µτ is a delta mass, we have that
∫
Rd
ϕ(x)µτ (dx) = ϕ(aτ ) which finishes the proof.

We finish the section with an important property of the process At.

Proposition 1.21. The rank of At is monotonic decreasing in t, and ker(At) ⊂ ker(As) for

t ≤ s.

Proof. To see that rank(At) is indeed monotonic decreasing, let v0 be such that At0v0 = 0 for

some t0 > 0, we will show that for any t ≥ t0, Atv0 = 0. In a similar fashion to Proposition

1.20, we define the process 〈v0, Atv0〉+
t∫

0

〈v0, AsC
2
sAsv0〉ds, which is, using Proposition 1.19,

a positive local martingale and so a super-martingale. This then implies that 〈v0, Atv0〉 is itself

a positive super-martingale. Since 〈v0, At0v0〉 = 0, we have that for any t ≥ t0, 〈v0, Atv0〉 = 0
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as well.

1.3 Convergence rates in transportation distance

1.3.1 The case of bounded random vectors: proof of Theorem 1.1

In this subsection we fix a measure µ on Rd and a random vector X ∼ µ with the assumption

that ‖X‖ ≤ β almost surely for some β > 0. We also assume that E [X] = 0.

We define the martingale process at along with the stopping time τ as in Section 1.2.3, where

we take Ct = A†t , so that at =
t∫

0

AsA
†
sdBs. We denote Pt := AtA

†
t , and remark that since At

is symmetric, Pt is a projection matrix. As such, we have that for any t < τ , Tr (Pt) ≥ 1. By

Proposition 1.20, aτ has the law µ.

In light of the remark following Theorem 1.10, our first objective is to understand the expecta-

tion of τ .

Lemma 1.22. Under the boundedness assumption ‖X‖ ≤ β, we have E [τ ] ≤ β2.

Proof. Let Ht = ‖at‖2. By Itô’s formula and since Pt is a projection matrix,

dHt = 2〈at, PtdBt〉+ Tr (Pt) dt = 2〈at, PtdBt〉+ rank (Pt) dt.

So, d
dt
E [Ht] = E [rank (Pt)]. Since E [H∞] ≤ β2,

β2 ≥ E [H∞]− E[H0] =

∞∫
0

E [rank (Pt)] dt ≥
∞∫

0

P (τ > t) dt = E [τ ] .

The above claim gives bounds on the expectation of τ , however in order to use Theorem

1.10, we need bounds for its tail behaviour in the sense of (1.2). To this end, we can use a

bootstrap argument and invoke the above lemma with the measure µt in place of µ, recalling

that X∞|Ft ∼ µt and noting that ‖X∞|Ft‖ ≤ β almost surely. Therefore, we can consider the

conditioned stopping time τ |Ft − t and get that

E [τ |Ft] ≤ t+ β2.

The following lemma will make this precise.
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Lemma 1.23. Suppose that, for the stopping time τ , it holds that for every t > 0, E [τ |Ft] ≤
t+ β2 a.s., then

∀i ∈ N, P
(
τ ≥ i · 2β2

)
≤ 1

2i
. (1.10)

Proof. Denote ti = i · 2β2. Since µt is Markovian, and by the law of total probability, for any

i ∈ N we have the relation

P (τ ≥ ti+1) ≤ P (τ > ti) ess sup
µti

(
P
(
τ − ti ≥ 2β2|Fti

))
,

where the essential supremum is taken over all possible states of µti . Using Markov’s inequality,

we almost surely have

P
(
τ − ti ≥ 2β2|Fti

)
≤ E [τ − ti|Fti ]

2β2
≤ 1

2
,

which is also true for the essential supremum. Clearly P (τ ≥ 0) = 1 which finishes the proof.

Proof of Theorem 1.1. Our objective is to apply Theorem 1.10, defining Xt = at and Γt = Pt

so that (Xt,Γt, τ) becomes a martingale embedding according to Proposition 1.20. In this case,

we have that Γt is a projection matrix almost surely. Thus,

Tr
(
E[Γ4

t ]E
[
Γ2
t

]†) ≤ d,

and

Tr
(
E[Γ2

t ]
)
≤ dP (τ > t) .

Therefore, if G and Sn are defined as in Theorem 1.10, then

W2
2 (Sn, G) ≤

2β2 log2(n)∫
0

d

n
dt+

∞∫
2β2 log2(n)

4dP(τ > t)dt

≤ 2dβ2 log2(n)

n
+ 4d

∞∫
2β2 log2(n)

P
(
τ >

⌊
t

2β2

⌋
2β2

)
dt

(1.10)
≤ 2dβ2 log2(n)

n
+ 4d

∞∫
2β2 log2(n)

(
1

2

)⌊ t
2β2

⌋
dt

≤ 2dβ2 log2(n)

n
+ 8dβ2

∞∑
j=blog2(n)c

1

2j
≤ 2dβ2 log2(n)

n
+

32dβ2

n
.
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Taking square roots, we finally have

W2(Sn, G) ≤ β
√
d
√

32 + 2 log2(n)√
n

,

as required.

1.3.2 The case of log-concave vectors: proof of Theorem 1.2

In this section we fix µ to be an isotropic log concave measure. The processes at = aµt , At = Aµt

are defined as in Section 1.2.3 along with the stopping time τ . To define the matrix process Ct,

we first define a new stopping time

T := 1 ∧ inf{t| ‖At‖op ≥ 2}.

Ct is then defined in the following manner:

Ct =

min(A†t , Id) if t ≤ T

A†t otherwise

where, again, A†t denotes the pseudo-inverse of At and min(A†t , Id) is the unique matrix which

is diagonalizable with respect to the same basis as A†t and such that each of its eigenvalues

corresponds to an an eigenvalue of A†t truncated at 1. Since Tr
(
AtA

†
t

)
≥ 1 whenever t ≤ τ ,

then the conditions of Proposition 1.20 are clearly met for t0 = 1 and aτ has the law of µ.

In order to use Theorem 1.10, we will also need to demonstrate that τ has subexponential

tails in the sense of (1.2). For this, we first relate τ to the stopping time T .

Lemma 1.24. τ < 1 + 4
T

.

Proof. Let Σt be as in Proposition 1.18. As described in the proposition, µt is proportional to µ

times a Gaussian of covariance Σt, on an appropriate affine subspace. In this case, an application

of the Brascamp-Lieb inequality (see [133] for details) shows that At = Cov(µt) � Σt. In

particular, this means that for t > T , when restricted to the orthogonal complement of ker(At),

the following inequality holds,

d

dt
Σt = −ΣtC

2
t Σt � −Id.

So, τ ≤ T + ‖ΣT‖op.
It remains to estimate ‖ΣT‖op. To this end, recall that for 0 < t ≤ T , we have ‖At‖op ≤ 2,

which implies
d

dt
Σt = −ΣtC

2
t Σt � −

1

4
Σ2
t .
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Now, consider the differential equation f ′(t) = −1
4
f(t)2 with f(T ) = ‖ΣT‖op, which has

solution f(t) = 4
t−T+ 4

‖ΣT ‖op
. By Gronwall’s inequality, f(t) lower bounds ‖Σt‖op for 0 < t ≤

T , and so, in particular, f(t) must remain finite within that interval. Consequently, we have

4

‖ΣT‖op
> T =⇒ ‖ΣT‖op <

4

T
.

We conclude that

τ ≤ T + ‖ΣT‖op < 1 +
4

T
,

as desired.

Lemma 1.25. There exist universal constants c, C > 0 such that if s > C · κ2
d ln(d)2 and d ≥ 8

then

P(τ > s) ≤ e−cs,

where κd is the constant defined in (1.1).

Proof. First, by using the previous claim, we may see that for any s ≥ 5,

P (τ > s) ≤ P
(

1

T
≥ s− 1

4

)
≤ P

(
1

T
≥ s

5

)
= P

(
5s−1 ≥ T

)
= P

(
max

0≤t≤5s−1
‖At‖op ≥ 2

)
.

Recall from Proposition 1.19,

dAt =

∫
Rd

(x− at)⊗ (x− at)〈Ct (x− at) , dBt〉µt(dx)− AtC2
tAtdt.

Since we are trying to bound the operator norm of At, we might as well just consider the matrix

Ãt = At +
t∫

0

AsC
2
sAsds. Note that, by definition of T , for any t ≤ T ,

t∫
0

AsC
2
sAsds � Id.

Thus, for t ∈ [0, T ],

3Id � At + Id � Ãt � At. (1.11)

Also, Ãt can be written as,

dÃt =

∫
Rd

(x− at)⊗ (x− at)〈Ct(x− at), dBt〉µt(dx), Ã0 = Id. (1.12)
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The above shows

P
(

max
0≤t≤5s−1

‖At‖op ≥ 2

)
≤ P

(
max

0≤t≤5s−1
||Ãt||op ≥ 2

)
.

We note than whenever ||Ãt||op ≥ 2 then also Tr
(
Ã

4 ln(d)
t

) 1
4 ln(d) ≥ 2, so that

P
(

max
0≤t≤5s−1

||Ãt||op ≥ 2

)
≤ P

(
max

0≤t≤5s−1
Tr
(
Ã

4 ln(d)
t

) 1
4 ln(d) ≥ 2

)
≤ P

(
max

0≤t≤5s−1
ln
(

Tr
(
Ã

4 ln(d)
t

))
≥ 2 ln(d)

)
= P

(
max

0≤t≤5s−1
(Mt + Et) ≥ 2 ln(d)

)
,

(1.13)

where Mt and Et form the Doob-decomposition of ln
(

Tr
(
Ã

4 ln(d)
t

))
. That is, Mt is a local

martingale and Et is a process of bounded variation. To calculate the differential of the Doob-

decomposition, fix t, let v1, ..., vn be the unit eigenvectors of Ãt and let αi,j = 〈vi, Ãtvj〉 with

dαi,j =

∫
Rd

〈x, vi〉〈x, vj〉〈Ctx, dBt〉µt(dx+ at),

which follows from (1.12). Also define

ξi,j =
1

√
αi,iαj,j

∫
Rd

〈x, vi〉〈x, vj〉Ctxµt(dx+ at).

So that

dαi,j =
√
αi,iαj,j〈ξi,j, dBt〉,

d

dt
[αi,j]t = αi,iαj,j ‖ξi,j‖2 .

Now, since vi is an eigenvector corresponding to the eigenvalue αi,i, we have

ξi,j =

∫
Rd

〈Ã−1/2
t x, vi〉〈Ã−1/2

t x, vj〉Ctxµt(dx+ at).

If we define the measure µ̃t(dx) = det(Ãt)
1/2µt(Ã

1/2
t dx+at), then µ̃t has the law of a centered

log-concave random vector with covariance Ã−1/2
t AtÃ

−1/2
t � Id. By making the substitution

y = Ã
−1/2
t x, the above expression becomes

ξi,j =

∫
Rd

〈y, vi〉〈y, vj〉CtÃ1/2
t yµ̃t(dy).

By (1.11) and the definition of T , Ct, for any t ≤ T , Ã1/2
t � 2Id and Ct � Id. So,

∥∥∥CtÃ1/2
t

∥∥∥
op
≤

2. Under similar conditions, it was shown in [97], Lemma 3.2, that there exists a universal
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constant C > 0 for which

• for any 1 ≤ i ≤ d, ‖ξi,i‖2 ≤ C.

• for any 1 ≤ i ≤ d,
d∑
j=1

‖ξi,j‖2 ≤ Cκ2
d.

Furthermore, in the proof of Proposition 3.1 in the same paper it was shown

dTr
(
Ã

4 ln(d)
t

)
≤ 4 ln(d)

d∑
i=1

α
4 ln(d)
i,i 〈ξi,i, dBt〉+ 16Cκ2

d ln(d)2Tr
(
Ã

4 ln(d)
t

)
dt.

So, using Itô’s formula with the function ln(x) we can calculate the differential of the Doob

decomposition (1.13). Specifically, we use the fact that the second derivative of ln(x) is negative

and get

dEt ≤ 16Cκ2
d ln(d)2

Tr
(
Ã

4 ln(d)
t

)
Tr
(
Ã

4 ln(d)
t

) = 16Cκ2
d ln(d)2, E0 = ln(d),

and

d

dt
[M ]t ≤ 16C2 ln(d)2

Tr
(
Ã

4 ln(d)
t

)
Tr
(
Ã

4 ln(d)
t

)
2

= 16C2 ln(d)2. (1.14)

Hence, Et ≤ t · 16Cκ2
n ln(d)2 + ln(d), which together with (1.13) gives

P (τ > s) ≤ P
(

max
0≤t≤5s−1

Mt ≥ 2 ln(d)− ln(d)− 80s−1Cκ2
d ln(d)2

)
∀s ≥ 5.

Under the assumption s > 80Cκ2
d ln(d)2, and since d ≥ 8, the above can simplify to

P (τ > s) ≤ P
(

max
0≤t≤5s−1

Mt ≥
1

2
ln(d)

)
. (1.15)

To bound this last expression, we will apply the Dubins-Schwartz theorem to write

Mt = W[M ]t ,

where Wt is some Brownian motion. Combining this with (1.15) gives

P (τ > s) ≤ P
(

max
0≤t≤5s−1

W[M ]t ≥
ln(d)

2

)
.

An application of Doob’s maximal inequality ( [208] Proposition I.1.8) shows that for any

t′, K > 0

P
(

max
0≤t≤t′

Wt ≥ K

)
≤ exp

(
−K

2

2t′

)
.
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We now integrate (1.14) and use the above inequality to obtain

P
(

max
0≤t≤5s−1

W[M ]t ≥
ln(d)

2

)
≤ e−cs,

where c > 0 is some universal constant.

Proof of Theorem 1.2. By definition of T and Ct, we have that for any t ≤ T , AtCt � 2Id and

for any t > T , AtCt = AtA
†
t � Id. We now invoke Theorem 1.10, with Γt = AtCt, for which

Tr
(
E[Γ4

t ]E
[
Γ2
t

]†) ≤ 4d,

and, by Lemma 1.25

Tr
(
E[Γ2

t ]
)
≤ 4dP (τ > t) ≤ 4de−ct ∀t > C · κ2

d ln(d)2.

If G is the standard d-dimensional Gaussian, then the theorem yields

W2
2 (Sn, G) ≤

C·κ2
d ln(d)2 ln(n)∫

0

4
d

n
dt+

∞∫
C·κ2

d ln(d)2 ln(n)

16dP (τ > t)

≤ 4
dC · κ2

d ln(d)2 ln(n)

n
+ 16d

∞∫
C·κ2

d ln(d)2 ln(n)

e−ctdt

≤ C ′
d · κ2

d ln(d)2 ln(n)

n
.

Thus

W2(Sn, G) ≤ Cκd ln(d)
√
d ln(n)√

n
,

1.4 Convergence rates in entropy

Throughout this section, we fix a centered measure µ onRd with an invertible covariance matrix

Σ and G ∼ N (0,Σ). Let {X(i)} be independent copies of X ∼ µ and Sn := 1√
n

n∑
i=1

X(i).

Our goal is to study the quantity Ent (Sn||G). In light of Theorem 1.12, we aim to construct

a martingale embedding (Xt,Γt, 1) such that X1 ∼ µ and which satisfies appropriate bounds

on the matrix Γt. Our construction uses the process at from Proposition 1.15 with the choice
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Ct := 1
1−tId. Property 2 in Proposition 1.15 gives

at =

t∫
0

As
1− sdBs.

Thus, we denote

Γt :=
At

1− t .

Since
1∫
0

λmin(C2
t ) = ∞, Proposition 1.20 shows that the triplet (at,Γt, 1) is a martingale em-

bedding of µ. As above, the sequence Γ
(i)
t will denote independent copies of Γt and we define

Γ̃t :=

√∑n
i=1

(
Γ

(i)
t

)2

.

1.4.1 Properties of the embedding

Let vt stand for the F”ollmer drift, defined by 7, in the Introduction, and denote

Yt := Bt +

t∫
0

vsds.

In [100] (Section 2.2) it was shown that the density of the measure Y1|Ft has the same dynamics

as the density of µt. Thus, almost surely Y1|Ft ∼ µt and since at is the expectation of µt, we

have the identity

at = E [Y1|Ft] , (1.16)

and in particular we have a1 = Y1. Moreover, the same reasoning implies thatAt = Cov(Y1|Ft)
and

Γt =
Cov(Y1|Ft)

1− t . (1.17)

The following identity, which is immediate from 7, will be crucial in the sequel,

Ent(Y1||γ) =
1

2

1∫
0

E
[
‖vt‖2] dt. (1.18)

Lemma 1.26. It holds that d
dt
E [Cov(Y1|Ft)] = −E [Γ2

t ] .

Proof. From (1.16), we have

Cov(Y1|Ft) = E
[
Y ⊗2

1 |Ft
]
− E [Y1|Ft]⊗2 = E

[
Y ⊗2

1 |Ft
]
− a⊗2

t .
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at is a martingale, hence

d

dt
E [Cov(Y1|Ft)] = − d

dt
E [[a]t] = −E

[
Γ2
t

]
. (1.19)

Our next goal is to recover vt from the martingale at.

Lemma 1.27. The drift vt satisfies that identity vt =
t∫

0

Γs−Id
1−s dBs. Furthermore,

E
[
‖vt‖2] =

t∫
0

Tr
(
E
[
(Γs − Id)

2])
(1− s)2

ds. (1.20)

Proof. Recall identity (10), from the Introduction,

vt =

t∫
0

Γs − Id
1− s dBs.

The claim follows from a direct application of Itô’s isometry.

A combination of equations (1.18) and (1.20) gives the useful identity,

Ent (Y1||γ) =
1

2

1∫
0

t∫
0

Tr
(
E
[
(Γs − Id)

2])
(1− s)2

dsdt =
1

2

1∫
0

Tr
(
E
[
(Γt − Id)

2])
1− t dt, (1.21)

which was also shown in (11). We can further capitalize on the the previous lemma to obtain a

representation for E [Tr (Γt)], in terms of E
[
‖vt‖2].

Lemma 1.28. It holds that

E [Tr(Γt)] = d− (1− t)
(
d− Tr (Σ) + E

[
‖vt‖2]) .

Proof. The identity can be obtained through integration by parts. By Lemma 1.27,

E[‖vt‖2]
(1.20)
=

t∫
0

Tr
(
E
[
(Γs − Id)

2])
(1− s)2

ds

=

t∫
0

Tr (E [Γ2
s])

(1− s)2
ds− 2

t∫
0

Tr (E [Γs])

(1− s)2
ds+

t∫
0

Tr (Id)

(1− s)2
ds.
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Since, by Lemma 1.26, d
dt
E [Cov (Y1|Ft)] = −E [Γ2

t ] integration by parts shows

t∫
0

Tr (E [Γ2
s])

(1− s)2
ds = −Tr (E [Cov (Y1|Fs)])

(1− s)2

∣∣∣∣∣
t

0

+ 2

t∫
0

Tr (E [Cov (Y1|Fs)])
(1− s)3

ds

= Tr (Σ)− Tr (E [Γt])

1− t + 2

t∫
0

Tr (E [Γs])

(1− s)2
ds,

where we have used (1.17) and the fact Cov (Y1|F0) = Cov (Y1) = Σ. Plugging this into the

previous equation shows

E[‖vt‖2] = Tr (Σ)− Tr (E [Γt])

1− t +
d

1− t − d.

or equivalently

E [Tr(Γt)] = d− (1− t)
(
d− Tr (Σ) + E

[
‖vt‖2]) .

Next, as in Theorem 1.12, we define σt to be the minimal eigenvalue of E [Γt], so that

E [Γt] � σtId.

Note that by Jensen’s inequality we also have

E
[
Γ2
t

]
� σ2

t Id. (1.22)

Lemma 1.29. Assume that Ent(Y1||γ) <∞. Then Γt is almost surely invertible for all t ∈ [0, 1)

and, moreover, there exists a constant m = mµ > 0 for which

σt ≥ m, ∀t ∈ [0, 1).

Proof. We will show that for every 0 ≤ t < 1, σt > 0 and that there exists c > 0 such that

σt >
1
8

whenever t > 1− c. The claim will then follow by continuity of σt. The key to showing

this is identity (1.21), due to which,

Ent (Y1||γ) =
1

2

1∫
0

Tr
(
E
[
(Γt − Id)

2])
1− t dt.

Recall that, by Equation (1.17), Γt = Cov(Y1|Ft)
1−t and observe that, by Proposition 1.21, if

Cov (Y1|Fs) is not invertible for some 0 ≤ s < 1 then Cov (Y1|Ft) is also not invertible for

any t > s. Under this event, we would have that
1∫
s

Tr((Γt−Id)2)
1−t dt = ∞ which, using the above

50



display, implies that the probability of this event must be zero. Therefore, Γt is almost surely

invertible and σt > 0 for all t ∈ [0, 1).

Suppose now that for some t′ ∈ [0, 1], σt′ ≤ 1
8
. By Jensen’s inequality, we have

Tr
(
E
[
(Γt − Id)

2]) ≥ Tr
(
E [Γt − Id]

2) ≥ (1− σt)2 ≥ 1− 2σt.

Since, by Lemma 1.26, E [Cov (Y1|Ft)] is non increasing, for any t′ ≤ t ≤ t′ + 1−t′
2

,

σt ≤
σt′(1− t′)

1− t ≤ 1− t′
8(1− t′ − 1−t′

2
)

=
1

4
.

Now, assume by contradiction that there exists a sequence ti ∈ (0, 1) such that σti ≤ 1
8

and lim
i→∞

ti = 1. By passing to a subsequence we may assume that ti+1 − ti ≥ 1−ti
2

for all i.

The assumption Ent(Y1||γ) <∞ combined with Equation (1.21) and with the last two displays

finally gives

∞ >

1∫
0

Tr
(
E
[
(Γt − Id)

2])
1− t dt ≥

1∫
0

1− 2σt
1− t dt ≥

∞∑
i=1

ti+
1−ti

2∫
ti

1

2

1

1− tdt ≥ log 2
∞∑
i=1

1

2
,

which leads to a contradiction and completes the proof.

1.4.2 Proof of Theorem 1.5

Thanks to the assumption Ent (Y1||G) < ∞, an application of Lemma 1.29 gives that Γt is

invertible almost surely, so we may invoke the second bound in Theorem 1.12 to obtain

Ent(Sn||G) ≤
1∫

0

Tr

(
E [Γ2

t ]− E
[
Γ̃t

]2
)

(1− t)2

 1∫
t

σ−2
s ds

 dt.

The same lemma also shows that for some m > 0 one has

1∫
t

σ−2
s ds ≤ 1− t

m2
.

Therefore, we attain that

Ent(Sn||G) ≤ 1

m2

1∫
0

Tr

(
E [Γ2

t ]− E
[
Γ̃t

]2
)

1− t dt. (1.23)
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Next, observe that, by Itô’s isometry,

Cov(X) =

1∫
0

E
[
Γ2
t

]
dt.

Hence, as long as Cov(X) is finite, E [Γ2
t ] is also finite for all t ∈ A where [0, 1] \ A is a set of

measure 0. We will use this fact to show that

lim
n→∞

Tr

(
E
[
Γ2
t

]
− E

[
Γ̃t

]2
)

= 0, ∀t ∈ A. (1.24)

Indeed, by the law of large numbers, Γ̃t almost surely converges to
√
E [Γ2

t ]. Since
(

Γ
(i)
t

)2

are integrable, we get that the sequence 1
n

n∑
i=1

(
Γ

(i)
t

)2

is uniformly integrable. We now use the

inequality

Γ̃t �

√√√√ 1

n

n∑
i=1

(
Γ

(i)
t

)2

+ Id �
1

n

n∑
i=1

(
Γ

(i)
t

)2

+ Id,

to deduce that Γ̃t is uniformly integrable as well. An application of Vitali’s convergence theo-

rem (see [118], for example) implies (1.24).

We now know that the integrand in the right hand side of (1.23) convergence to zero for

almost every t. It remains to show that the expression converges as an integral, for which we

intend to apply the dominated convergence theorem. It thus remains to show that the expression

Tr

(
E [Γ2

t ]− E
[
Γ̃t

]2
)

1− t

is bounded by an integrable function, uniformly in n, which would imply that

lim
n→∞

Ent(Sn||G) = 0,

and the proof would be complete. To that end, recall that the square root function is concave on

positive definite matrices (see e.g., [9]), thus

Γ̃t �
1

n

n∑
i=1

Γ
(i)
t .

It follows that

Tr

(
E
[
Γ2
t

]
− E

[
Γ̃t

]2
)
≤ Tr

(
E
[
Γ2
t

]
− E [Γt]

2) ≤ Tr
(
E
[
(Γt − Id)

2]) .
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So we have

1

m2

1∫
0

Tr

(
E [Γ2

t ]− E
[
Γ̃t

]2
)

1− t dt ≤ 1

m2

1∫
0

Tr
(
E
[
(Γt − Id)

2])
1− t dt

(1.21)
=

2

m2
Ent (Y1||γ) <∞.

This completes the proof.

1.4.3 Quantitative bounds for log concave random vectors

In this section, we make the additional assumption that the measure µ is log concave. Under

this assumption, we show how one can obtain explicit convergence rates in the central limit

theorem. Our aim is to use the bound in Theorem 1.12 for which we are required to obtain

bounds on the process Γt. We begin by recording several useful facts concerning this process.

Lemma 1.30. The process Γt has the following properties:

1. If µ is log concave, then for every t ∈ [0, 1], Γt � 1
t
Id, almost surely.

2. If µ is also 1-uniformly log concave, then for every t ∈ [0, 1], Γt � Id almost surely.

Proof. Denote by ρt the density of Y1|Ft with respect to the Lebesgue measure with ρ := ρ0

being the density of µ. By Proposition 1.18 with Ct = Id
1−t , we can calculate the ratio between

ρt and ρ. In particular, we have

d

dt
Σ−1
t = −Σ−1

t

(
d

dt
Σt

)
Σ−1
t =

1

(1− t)2
Id.

Solving this differential equation with the initial condition Σ−1
0 = 0, we find that Σ−1

t = t
1−tId.

Since the ratio between ρt and ρ is proportional to the density of a Gaussian with covariance

Σt, we thus have

−∇2 log(ρt) = −∇2 log(ρ) +
t

1− tId.

Now, if µ is log concave then Y1|Ft is almost surely t
1−t -uniformly log-concave. By the

Brascamp-Lieb inequality (as in [133]) we get Cov (Y1|Ft) � 1−t
t

Id and, using (1.17),

Γt �
1

t
Id.

If µ is also 1-uniformly log-concave then −∇2 log(ρ) � Id and almost surely

−∇2 log(ρt) �
1

1− tId.
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By the same argument this implies

Γt � Id.

The relative entropy to the Gaussian of a log concave measure with non-degenerate covari-

ance structure is finite (it is even universally bounded, see [173]). Thus, by Lemma 1.29, it

follows that Γt is invertible almost surely. This allows us to invoke the first bound of Theorem

1.12,

Ent(Sn||G) ≤ 1

n

1∫
0

E
[
Tr
(

(Γ2
t − E [Γ2

t ])
2
)]

(1− t)2σ2
t

 1∫
t

σ−2
s ds

 dt. (1.25)

Attaining an upper bound on the right hand side amounts to a concentration estimate for the

process Γ2
t and a lower bound on σt. These two tasks are the objective of the following two

lemmas.

Lemma 1.31. If µ is log concave and isotropic then for any t ∈ [0, 1),

Tr
(
E
[(

Γ2
t − E

[
Γ2
t

])2
])
≤ 1− t

t2

(
d(1 + t)

t2
+ 2E

[
‖vt‖2]) ,

and

Tr
(
E
[(

Γ2
t − E

[
Γ2
t

])2
])
≤ C

d4

(1− t)4

for a universal constant C > 0.

Proof. The isotropicity of µ, used in conjunction with the formula given in Lemma 1.28, yields

Tr
(
E
[
Γ2
t

])
≥ 1

d
Tr (E [Γt])

2 ≥ d− 2(1− t)E
[
‖vt‖2] ,

where the first inequality follows by convexity. Since µ is log concave, Lemma 1.30 ensures

that, almost surely, Γt � 1
t
Id. Therefore,

Tr
(
E
[(

Γ2
t − E

[
Γ2
t

])2
])
≤ Tr

(
E

[(
Γ2
t −

1

t2
Id

)2
])

=
1

t4
Tr
(
E
[(

Id − t2Γ2
t

)2
])

≤ 1

t4
Tr
(
E
[
Id − t2Γ2

t

])
≤ 1− t

t2

(
d(1 + t)

t2
+ 2E

[
‖vt‖2]) .

Which proves the first bound. Towards the second bound, we use (1.17) to write

Γ2
t �

1

(1− t)2
E
[
Y ⊗2

1 |Ft
]2
.
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So,

E
[∥∥Γ2

t

∥∥2

HS

]
≤ 1

(1− t)4
E
[∥∥‖Y1‖2 Y ⊗2

1

∥∥2

HS

]
≤ 1

(1− t)4
E
[
‖Y1‖8] .

For an isotropic log concave measure, the expression E
[
‖Y1‖8] is bounded from above by Cd4

for a universal constant C > 0 (see [203]). Thus,

Tr
(
E
[(

Γ2
t − E

[
Γ2
t

])2
])

= E
[∥∥Γ2

t − E
[
Γ2
t

]∥∥2

HS

]
≤ 2E

[∥∥Γ2
t

∥∥2

HS

]
≤ C

d4

(1− t)4
.

Lemma 1.32. Suppose that µ is log concave and isotropic, then there exists a universal constant

1 > c > 0 such that

1. For any, t ∈ [0, c
d2 ], σt ≥ 1

2
.

2. For any, t ∈ [ c
d2 , 1], σt ≥ c

td2 .

Proof. By Lemma 1.26, we have

d

dt
E [Cov(Y1|Ft)] = −E

[
Γ2
t

] (1.17)
= −E

[
Cov (Y1|Ft)2]

(1− t)2
.

Moreover, by convexity,

E
[
Cov (Y1|Ft)2] � E [E [Y ⊗2

1 |Ft
]2] � E [‖Y1‖4] Id.

It is known (see [203]) then when µ is log concave and isotropic there exists a universal constant

C > 0 such that

E
[
‖Y1‖4] ≤ Cd2.

Consequently, d
dt
E [Cov(Y1|Ft)] � − Cd2

(1−t)2 Id, and since Cov(Y1|F0) = Id,

E [Cov(Y1|Ft)] �

1− Cd2

t∫
0

1

(1− s)2
ds

 Id =

(
1− Cd2t

1− t

)
Id.

By increasing the value of C, we may legitimately assume that 1
Cd2 ≤ 1, thus for any t ∈

[0, 1
3Cd2 ] we get that

E [Cov(Y1|Ft)] �
1

2
Id,

which implies σt ≥ 1
2

and completes the first part of the lemma. In order to prove the second
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part, we first write

d

dt
E [Γt] =

d

dt

E [Cov(Y1|Ft)]
1− t

(Lemma 1.26)
=

E [Cov(Y1|Ft)]− (1− t)E [Γ2
t ]

(1− t)2
=
E [Γt]− E [Γ2

t ]

1− t .

(1.26)

Since, by Lemma 1.30, Γt � 1
t
Id, we have the bound

E [Γt]− E [Γ2
t ]

1− t � 1− 1
t

1− t E [Γt] = −1

t
E [Γt] .

Now, consider the differential equation f ′(t) = −f(t)
t

, f
(

1
3Cd2

)
= 1

2
. Its unique solution is

f(t) = 1
6Cd2t

. Thus, Gromwall’s inequality shows that σt ≥ 1
6Cd2t

, which concludes the proof.

Proof of Theorem 1.6. Our objective is to bound from above the right hand side of Equation

(1.25). As a consequence of Lemma 1.32, we have that for any t ∈ [0, 1),

1∫
t

σ−2
s ds ≤ Cd4(1− t),

for some universal constant C > 0. It follows that the integral in (1.25) admits the bound

1∫
0

E
[
Tr
(

(Γ2
t − E [Γ2

t ])
2
)]

(1− t)2σ2
t

 1∫
t

σ−2
s ds

 dt ≤ Cd4

1∫
0

E
[
Tr
(

(Γ2
t − E [Γ2

t ])
2
)]

(1− t)σ2
t

dt.

Next, there exists a universal constant C ′ > 0 such that

Cd4

cd−2∫
0

E
[
Tr
(

(Γ2
t − E [Γ2

t ])
2
)]

(1− t)σ2
t

dt ≤ C ′
cd−2∫
0

d8

(1− t)5
dt ≤ C ′d8,

where we have used the second bound of Lemma 1.31 and the first bound of Lemma 1.32. Also,

by applying the second bound of Lemma 1.32 when t ∈ [cd−2, d−1] we get

Cd4

d−1∫
cd−2

E
[
Tr
(

(Γ2
t − E [Γ2

t ])
2
)]

(1− t)σ2
t

dt ≤ C ′
d−1∫

cd−2

d12t2

(1− t)5
dt ≤ C ′d9.
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Finally, when t > d−1, we have

Cd4

1∫
d−1

E
[
Tr
(

(Γ2
t − E [Γ2

t ])
2
)]

(1− t)σ2
t

dt ≤ C ′d8

1∫
d−1

t2E
[
Tr
(

(Γ2
t − E [Γ2

t ])
2
)]

1− t dt

≤ 2C ′d9

1∫
d−1

(
1

t2
+ E

[
‖vt‖2]) dt

(1.18)
≤ 4C ′d10(1 + Ent(Y1||G)),

where the first inequality uses Lemma 1.32 and the second one uses Lemma 1.31. This estab-

lishes

Ent(Sn||G) ≤ Cd10(1 + Ent(Y1||G))

n
.

Finally, we derive an improved bound for the case of 1-uniformly log concave measures,

based on the following estimates.

Lemma 1.33. Suppose that µ is 1-uniformly log concave, then for every t ∈ [0, 1)

1. Tr
(
E
[
(Γ2

t − E [Γ2
t ])

2
])
≤ 2(1− t)

(
d− Tr (Σ) + E

[
‖vt‖2]) .

2. σt ≥ σ0.

Proof. By Lemma 1.30, we have that Γt � Id almost surely. Using this together with the

identity given by Lemma 1.28, and proceeding in similar fashion to Lemma 1.31 we obtain

Tr
(
E
[
Γ2
t

])
≥ 1

d
Tr (E [Γt])

2 ≥ d− 2(1− t)
(
d− Tr (Σ) + E

[
‖vt‖2]) ,

and

Tr
(
E
[(

Γ2
t − E

[
Γ2
t

])2
])
≤ Tr

(
E
[(

Γ2
t − Id

)2
])
≤ Tr

(
E
[
Id − Γ2

t

])
≤ 2(1− t)

(
d− Tr (Σ) + E

[
‖vt‖2]) .

Also, recalling (1.26) and since Γt � Id we get

d

dt
E [Γt] =

E [Γt]− E [Γ2
t ]

1− t ≥ 0,

which shows that σt is bounded from below by a non-decreasing function and so σt ≥ σ0 which

is the minimal eigenvalue of Σ.
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Proof of Theorem 1.7. Plugging the bounds given in Lemma 1.33 into Equation (1.25) yields

Ent(Sn||G) ≤ 1

n

1∫
0

E
[
Tr
(

(Γ2
t − E [Γ2

t ])
2
)]

(1− t)2σ2
t

 1∫
t

σ−2
s ds

 dt

≤
2

(
d+

1∫
0

E
[
‖vt‖2] dt)

σ4
0n

(1.18)
=

2 (d+ 2Ent (X||γ))

σ4
0n

,

which completes the proof.
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2
A Central Limit Theorem in Stein’s Distance

for Generalized Wishart Matrices and Higher

Order Tensors

2.1 Introduction

Let µ be an isotropic probability measure on Rn. For 2 ≤ p ∈ N, we consider the following

tensor analogue of the Wishart matrix,

1√
d

d∑
i=1

(
X�pi − E

[
X�pi

])
,

where Xi ∼ µ are i.i.d. and X�pi stands for the symmetric p’th tensor power of Xi. We denote

the law of this random tensor by W p
n,d(µ). Such distributions arise naturally as the sample mo-

ment tensor of the measure µ, in which case d serves as the sample size. For reasons soon to

become apparent, we will sometimes refer to such tensors as Wishart tensors.

When p = 2, W 2
n,d(µ) is the sample covariance of µ. If X is an n × d matrix with columns

independently distributed as µ, then W 2
n,d(µ) may also be realized as the upper triangular part
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of the matrix,
XXT − dId√

d
. (2.1)

Hence, W 2
n,d(µ) has the law of a Wishart matrix. These matrices have recently been studied in

the context of random geometric graphs ( [53, 56, 58, 102]).

For fixed p, n, according to the central limit theorem (CLT), as d→∞, W p
n,d(µ) approaches

a normal law. The aim of this chapter is to study the high-dimensional regime of the problem,

where we allow the dimension n to scale with the sample size d. Specifically, we investigate

possible conditions on n and d for the CLT to hold. Observe that this problem may be reformu-

lated as a question about the rate of convergence in the high-dimensional CLT, for the special

case of Wishart tensors.

Our starting point is the paper [58], which obtained an optimal bound when p = 2, for

log-concave product measures. Remark that when µ is a product measure, the entries of the

matrix X in (2.1) are all independent. The proof [58] was information-theoretic and made use

of the chain rule for relative entropy to account for the low-dimensional structure of W 2
n,d(µ).

For now, we denote W̃ 2
n,d(µ) to be the same law as W 2

n,d(µ), but with the diagonal elements

removed (see below for a precise definition).

Theorem 2.1 ( [58, Theorem 1]). Let µ be a log-concave product measure on Rn and let γ

denote the standard Gaussian in R(n2). Then,

1. If n3 � d then Ent
(
W̃ 2
n,d(µ)||γ

)
n→∞−−−→0.

2. If n3 � d, then W 2
n,d(µ) remains bounded away from any Gaussian law.

Here, Ent stands for relative entropy (see Section 2.1.1 for the definition).

Thus, for log-concave product measures there is a sharp condition for the CLT to hold. Our

results, which we now summarize, generalize Point 1 of Theorem 2.1 in several directions and

are aimed to answer questions which were raised in [58].

• We show that it is not necessary for µ to have a product structure. So, in particular, the

matrix X in (2.1) may admit some dependence between its entries.

• If µ is a product measure, we relax the log-concavity assumption and show the same result

holds for a much larger class of product measures.

• The above results extend to the case p > 2, and we propose the new threshold n2p−1 � d.

• We show that Theorem 2.1 is still true when we take the full symmetric tensor W 2
n,d(µ)

and include the diagonal.
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Naively, since W p
n,d(µ) can be realized as a sum of i.i.d. random vectors, one should be able

to employ standard techniques of Stein’s method (such as exchangeable pairs [69], as proposed

in [58]) in order to deduce some bounds. However, it turns out that the obtained bounds are

sub-optimal. The reason for this sub-optimality is that, while X�p is a random vector in a high-

dimensional space, its randomness comes from the lower-dimensional Rn. So, at least on the

intuitive level, one must exploit the low-dimensional structure of the random tensor in order to

produce better bounds. Our method is is based on a novel application of Stein’s method which

is particularly adapted to this situation and may be of use in other, similar, settings.

2.1.1 Definitions and notations

Probability measures: A measure is said to be unconditional, if its density satisfies

dµ

dx
(±x1, ...,±xn) =

dµ

dx
(|x1|, ..., |xn|),

where in the left side of the equality we consider all possible sign patterns. Note that, in par-

ticular, if X = (X(1), ..., X(n)) is isotropic and unconditional, then , for any choice of distinct

indices j1, ..., jk and powers n2, ..., nk,

E
[
X(j1) ·Xn2

(j2) ·Xn3

(j3) · ... ·X
nk
(jk)

]
= 0. (2.2)

Finally, if ϕ : Rn → RN for some N ≥ 0, we denote ϕ∗µ, to be the push-forward of µ by ϕ.

Tensor spaces: Fix {ej}nj=1 to be the standard basis in Rn. We identify the tensor space

(Rn)⊗p with Rnp where the base is given by

{ej1ej2 ...ejp|1 ≤ j1, j2, ..., jp ≤ n}.

Under this identification, we may consider the symmetric tensor space Symp(Rn) ⊂ (Rn)⊗p

with basis

{ej1ej2 ...ejp|1 ≤ j1 ≤ j2... ≤ jp ≤ n}.

We will also be interested in the subspace of principal tensors, S̃ym
p
(Rn) ⊂ Symp(Rn),

spanned by the basis elements

{ej1ej2 ...ejp |1 ≤ j1 < j2... < jp ≤ n}.

Our main result will deal with the marginal of W p
n,d(µ) on the subspace S̃ym

p
(Rn). We denote

this marginal law by W̃ p
n,d(µ). Put differently, if Xi = (Xi,1, ..., Xi,n) are i.i.d. random vectors

61



with law µ. Then, W̃ p
n,d(µ) is the law of a random vector in S̃ym

p
(Rn) with entries(

1√
d

d∑
i=1

Xi,j1 ·Xi,j2 · · · · ·Xi,jp

)
1≤j1<···<jp≤n

.

2.1.2 Main results

Our main contribution is a new approach, detailed in Section 2.3, to Stein’s method, which

allows to capitalize on the fact that a high-dimensional random vector may have some latent

low-dimensional structure. Thus, it is particularly well suited to study the CLT for W p
n,d(µ).

Using this approach, we obtain the following threshold for the CLT: Suppose that µ is a ”nice”

measure. Then, if n2p−1 � d, W p
n,d(µ) is approximately Gaussian, as d tends to infinity.

We now state several results which are obtained using our method. The first result shows

that, under some assumptions, the matrix X in (2.1), can admit some dependencies, even when

considering higher order tensors.

Theorem 2.2. Let µ be an isotropic L-uniformly log-concave measure on Rn which is also

unconditional. Denote Σ−
1
2 =

√
Σ̃p(µ)−1, where Σ̃p(µ) is the covariance matrix of W̃ p

n,d(µ).

Then, there exists a constant Cp, depending only on p, such that

W2
2

(
Σ
− 1

2
∗ W̃ p

n,d(µ), γ
)
≤ Cp
L4

n2p−1

d
,

where Σ
− 1

2
∗ W̃ p

n,d(µ) is the push-forward by the linear operator Σ−
1
2 .

An important remark, which applies to the coming results as well, is that the bounds are

formulated with respect to the quadratic Wasserstein distance. However, as will become evident

from the proof, the bounds actually hold with a stronger notion of distance: namely, Stein’s

discrepancy (see Section 2.2 for the definition). We have decided to state our results with the

more familiar Wasserstein distance to ease the presentation. Our next result is a direct extension

of Theorem 2.1, as it both applies to a larger class of product measures and to p > 2.

Theorem 2.3. Let µ be an isotropic product measure on Rn, with independent coordinates.

Then, there exists a constant Cp > 0, depending only on p, such that

1. If µ is log-concave, then

W2
2

(
W̃ p
n,d(µ), γ

)
≤ Cp

n2p−1

d
log(n)2.

2. If each coordinate marginal of µ satisfies the L1-Poincaré inequality (see Section 2.2.2)
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with constant c > 0, then

W2
2

(
W̃ p
n,d(µ), γ

)
≤ Cp

1

c2p+2

n2p−1

d
log(n)4.

3. If there exists a uni-variate polynomialQ of degree k, such that each coordinate marginal

of µ has the same law as the push-forward measure Q∗γ1, then

W2
2

(
W̃ p
n,d(µ), γ

)
≤ CQ,p

n2p−1

d
log(n)2(k−1),

where CQ,p > 0 may depend both on p and the polynomial Q.

Observe that, when µ is an isotropic product measure, then W̃ p
n,d(µ) is also isotropic (when

considered as a random vector in S̃ym
p
(Rn)), which explains why the matrix Σ−

1
2 does not

appear in Theorem 2.3. Our last result is an extension to Theorem 2.3 which shows that, some-

times, we may consider subspaces of (Rn)⊗p which are strictly larger than S̃ym
p

(Rn). We

specialize to the case p = 2, and show that one may consider the full symmetric matrixW 2
n,d(µ).

Theorem 2.4. Let µ be an isotropic log-concave measure on Rn. Assume that µ is a prod-

uct measure with independent coordinates and denote Σ−
1
2 =

√
Σ2(µ)−1, where Σ2(µ) is the

covariance matrix of W 2
n,d(µ). Then, there exists a universal constant C > 0 such that

W2
2

(
Σ
− 1

2
∗ W 2

n,d(µ), γ
)
≤ C

n3

d
log(n)2.

2.1.3 Related work

The study of normal approximations for high-dimensional Wishart tensors was initiated in [56]

(see [143] as well, for an independent result), which dealt with the case of W̃ 2
n,d(γ). The au-

thors were interested in detecting latent geometry in random geometric graphs. The main result

of [56] was a particular case of Theorem 2.1, which gave a sharp threshold for detection in

the total variation distance. The Gaussian setting was studied further in [207], where a smooth

transition between the regimes n3 � d and n3 � d, was shown to hold. The proof of such re-

sults was facilitated by the fact that W̃ 2
n,d(γ) has a tractable density with respect to the Lebesgue

measure. This is not the case in general though.

In a follow-up ( [58]), as discussed above, the results of [56] were expanded to the relative

entropy distance and to Wishart tensors W̃ 2
n,d(µ), where µ is a log-concave product measure.

Specifically, it was shown that one may consider relative entropy in the formulation of Theorem

2.1, and that

Ent
(
W̃ 2
n,d(µ)||γ

)
≤ C

n3 log(d)2

d
,
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for a universal constant C > 0. The main idea of the proof was a clever use of the chain rule

for relative entropy along with ideas adapted from the one-dimensional entropic central limit

theorem proven in [17]. We do note the this result is not directly comparable to our results. As

remarked, our results hold in Stein’s discrepancy. In general, Stein’s discrepancy and relative

entropy are not comparable. However, one may bound the relative entropy by the discrepancy,

in some cases. One such case, is when the measure has a finite Fisher information. W̃ 2
n,d(γ) is

an example of such a measure.

The question of handling dependencies between the entries of the matrix X in (2.1) was

also tackled in [197]. The authors considered the case where the rows of X are i.i.d. copies

of a Gaussian measure whose covariance is a symmetric Toeplitz matrix. The paper employed

Stein’s method in a clever way, which seems to be somewhat different from our approach.

For another direction of handling dependencies, note that if the rows of X are independent,

but not isotropic, Gaussian vectors, then by applying an orthogonal transformation to the rows

we can obtain a matrix with independent entries which have different variances. Such measures

were studied in [102]. Specifically if α = {αi}di=1 ⊂ R+, with
∑
α2
i = 1 and Xi ∼ γ are

independent, then the paper introduced W 2
n,α(γ), as the law of,∑

αi
(
X�2
i − E

[
X�2
i

])
.

The following variant of Theorem 2.1 was given:

Ent
(
W̃ 2
n,α(γ)||γ(n2)

)
≤ Cn3

∑
α4
i . (2.3)

When αi ≡ 1√
d
, this recovers the previous known result. We mention here that our method

applies to non-homogeneous sums as well, with the same dependence on α. See Section 2.9 for

a comparison with the above result, as well as the one in [197].

The authors of [197] also dealt with Wishart tensors, when the underlying measure is the

standard Gaussian. It was shown that for some constant Cp, which depends only on p,

W1

(
W̃ p
n,d(γ), γ(np)

)
≤ Cp

√
n2p−1

d
.

Thus, our results should also be seen as a direct generalization of this bound.

Wishart tensors have recently gained interest in the machine learning community (see [8,

220] for recent results and applications). To mention a few examples: In [144] the distribution

of the maximal entry of W̃ p
n,d(µ) is investigated. Using tools of random matrix theory, the

spectrum of Wishart tensors is analyzed in [6], while [171] studies the central limit theorem
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for spectral linear statistics of W p
n,d(µ). Results of a different flavor are given in [239], where

exponential concentration is studied for a class of random tensors.

2.1.4 Organization

The rest of this chapter is organized in the following way: In Section 2.2 we introduce some

preliminaries from Stein’s method and concentration of measure, which will be used in our

proofs. In Section 2.3 we describe our method and present the necessary ideas with which we

will prove our results. In particular, we will state Theorem 2.5, which will act as our main

technical tool. In Section 2.4 we introduce a construction in Stein’s theory which will be used

in Section 2.5 to prove Theorem 2.5. Sections 2.6, 2.7 and 2.8 are then devoted to the proofs

of Theorems 2.2, 2.3 and 2.4 respectively. Finally, in Section 2.9 we discuss a generalization of

our results to non-homogeneous sums of the tensor powers.

2.2 Preliminaries

In this section we will describe our method and explain how to derive the stated results. We

begin with some preliminaries on Stein’s method.

2.2.1 Stein kernels

For convenience, we recall some of the definitions which appeared in the introduction to the

thesis. We say that a measurable matrix valued map τ : Rn →Mn(R) is a Stein kernel for µ,

if the following equality holds, for all locally-Lipschitz test functions f : Rn → Rn,∫
〈x, f(x)〉dµ(x) =

∫
〈τ(x), Df(x)〉HSdµ(x).

The Stein discrepancy is defined by,

S(µ) := inf
τ

√∫
‖τ(x)− Id‖2

HS dµ(x)

The first property that we will care about here is the linear decay of discrepancy along the CLT

(shown in (20))

S2(Sd) ≤
S2(X)

d
. (2.4)

The second property is the relation to the quadratic Wasserstein distance ((23))

W2
2 (µ, γ) ≤ S2(µ). (2.5)
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2.2.2 Smooth measures and concentration inequalities

Our result will mostly apply for measures which satisfy some regularity conditions. We detail

here the main properties which will be relevant.

A measure µ is said to satisfy the L1-Poincaré inequality with constant c if, for any differ-

entiable function f with 0-median,∫
|f | dµ ≤ 1

c

∫
‖∇f‖2 dµ.

Remark that the L1-Poincaré inequality is equivalent, up to constants, to the Cheeger’s isoper-

metric inequality. That is, if µ satisfies the L1-Poincaré inequality with constant c > 0, then for

some other constant c′ > 0, depending only on c, and for every measurable set B,

µ+ (∂B) ≥ c′µ(B) (1− µ(B)) .

where µ+ (∂B) is the outer boundary measure of B. Moreover, up to universal constants, the

L1-Poincaré inequality implies an L2-Poincaré inequality. We refer the reader to [61] for further

discussion of those facts.

For a given measure, the above conditions imply the existence sub-exponential tails. In

particular, if µ is a centered measure which satisfies the L1-Poincaré inequality (or L2) with

constant c, then, for any m ≥ 2:

E [‖X‖m2 ] ≤ Cm

(
1

c

)m
2

E
[
‖X‖2

2

]m
2 , (2.6)

where Cm depends only on m (see [181] for the connection between Poincaré inequalities and

exponential concentration). All log-concave measures satisfy a Poincaré inequality, which im-

plies that they have sub-exponential tails. In fact, a stronger statement holds for log-concave

measures, and one may omit the dependence on the Poincaré constant in (2.6) (see [170, Theo-

rem 5.22]). Thus, if X is a log-concave random vector,

E [‖X‖m2 ] ≤ C ′mE
[
‖X‖2

2

]m
2 .

for some constant C ′m > 0, depending only on m.

2.3 The method

With the above results, the following theorem is our main tool, with which we may prove CLTs

for W p
n,d(µ).
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Theorem 2.5. Let X ∼ µ be an isotropic random vector in Rn and let G ∼ N (0, Id) stand

for the standard Gaussian. Assume that X law
= ϕ(G) for some ϕ : Rn → Rn, which is locally-

Lipschitz and let A : Symp(Rn) → V be a linear transformation with V ⊂ Symp(Rn), such

that A∗W
p
n,d(µ) is isotropic. Then, for any 2 ≤ p ∈ N,

S2
(
A∗W

p
n,d(µ)

)
≤ 2 ‖A‖2

op p
4 · n
d

√
E
[
‖X‖8(p−1)

2

]√
E
[
‖Dϕ(G)‖8

op

]
+

2np

d
.

Some remarks are in order concerning the theorem. We first discuss the role of the matrix

A. Recall that, in order to use the sub-additive property (2.4) of the Stein discrepancy, the ran-

dom vectors need to be isotropic. This can be achieved via a normalizing linear transformation.

However, the term ‖A‖op which appears in the theorem tells us that if the covariance matrix of

W p
n,d(µ) has very small eigenvalues, the normalizing transformation might have adverse effects

on the rate of convergence. To avoid this, we will sometimes project the vectors into a subspace,

such as S̃ym
p
(Rn), where the covariance matrix is easier to control. Thus, A should be thought

of as a product of a projection matrix with the inverse of a covariance matrix on the projected

space. For our applications we will make sure that, ‖A‖op = O(1).

Concerning the other terms in the stated bound, there are two terms which we will need to

control,
√
E
[
‖X‖8(p−1)

2

]
and

√
E
[
‖Dϕ(G)‖8

op

]
. Since we are mainly interested in measures

with sub-exponential tails, the first term will be of order n2p−2 and we will focus on the second

term. Thus, in some sense, our bounds are meaningful mainly for measures which can be trans-

ported from the standard Gaussian with low distortion. Still, the class of measures which can

be realized in such a way is rather large and contains many interesting examples.

A map ψ is said to transport G to X if ψ(G) has the same law as X . To apply the result

we must realize X by choosing an appropriate transport map. It is a classical fact ( [52]) that,

whenever µ has a finite second moment and is absolutely continuous with respect to γ, there is

a distinguished map which transports G to X . Namely, the Brenier map which minimizes the

quadratic distance,

ϕµ := inf
ψ:ψ(G)

law
= X

E
[
‖G− ψ(G)‖2

2

]
.

The Brenier map has been studied extensively (see [62, 63, 78, 153] for example). Here, we

will concern ourselves with cases where one can bound the derivative of ϕµ. The celebrated

Caffareli’s log-concave perturbation theorem ( [64]) states that if µ is L-uniformly log-concave,

then ϕµ is 1
L

-Lipschitz. In particular, ϕ is differentiable almost everywhere with

‖Dϕµ(x)‖op ≤
1

L
.

67



In this case we get √
E
[
‖Dϕµ(G)‖8

op

]
≤ 1

L4
. (2.7)

Theorem 2.2 will follow from this bound. The reason why the theorem specializes to uncon-

ditional measures is that, in light of the dependence on the matrix A in Theorem 2.5, we need

to have some control over the covariance structure of W̃ p
n,d(µ). It turns out, that for uncondi-

tional log-concave measures the covariance of W̃ p
n,d(µ) is well behaved. The result might be

extended to uniformly log-concave measures which are not necessarily unconditional as long

as we allow the bound to depend on the minimal eigenvalue of the covariance matrix of W̃ p
n,d(µ).

There are more examples of measures for which the Brenier map admits bounds on the Lip-

schitz constant. In [79] it is shown that for measures µ which are bounded perturbation of the

Gaussian, including radially symmetric measures, ϕµ is Lipschitz. The theorem may thus be

applied to those measures as well.

One may also consider cases where the transport map is only locally-Lipschitz in a well

behaved way. For example, consider the case where X = (X(1), ..., X(n)) ∼ µ is a product

measure. That is, for i 6= j, X(i) is independent from X(j). Suppose that for i = 1, . . . , n, there

exist functions ϕi : R → R such that, if G1 is a standard Gaussian in R, then ϕi(G1)
law
= X(i)

and that ϕ has polynomial growth. Meaning, that for some constants α, β ≥ 0,

ϕ′i(x) ≤ α(1 + |x|β).

Since µ is a product measure, it follows that the map ϕ = (ϕ1, . . . , ϕn) transports G to X and

that,

‖Dϕ(x)‖op ≤ α(1 + ‖x‖β∞).

Thus, for product measures, we can translate bounds on the derivative of one-dimensional trans-

port maps into multivariate bounds involving the L∞ norm. Theorem 2.3 will be proved by

using these ideas and known estimates on the one-dimensional Brenier map (also known as

monotone rearrangement). Results like Theorem 2.4 can then be proven by bounding the co-

variance matrix of W 2
n,d(µ). Indeed, this is the main ingredient in the proof of the theorem.

One may hope that Theorem 2.5 could be applied to general log-concave measures. How-

ever, this would be a highly non-trivial task. Indeed, if we wish to use Theorem 2.5 in order to

verify the threshold n2p−1 � d, up to logarithmic terms, we should require that for any isotropic

log-concave measure µ, there exists a map ψµ such that ψµ(G) ∼ µ and E
[
‖Dψµ(G)‖8

op

]
≤

log(n)β , for some fixed β ≥ 0. Then, by applying the Gaussian L2-Poincaré inequality to the
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function ‖·‖2, we would get,

Var
(
‖ψµ(G)‖2

)
≤ E

[∥∥D (‖ψµ(G)‖2

)∥∥2

2

]
= E

[∥∥∥∥ ψµ(G)

‖ψµ(G)‖2

Dψµ(G)

∥∥∥∥2

2

]

≤ E
[∥∥∥∥ ψµ(G)

‖ψµ(G)‖2

∥∥∥∥2

2

· ‖Dψµ(G)‖2
op

]
= E

[
‖Dψµ(G)‖2

op

]
≤ log(n)

β
4 ,

where the first equality is the chain rule and the second inequality is a consequence of consider-

ing Dψµ as an n× n matrix. This bound would, up to logarithmic factors, verify the thin-shell

conjecture (see [13]), and, through the results of [97], also the KLS conjecture ( [147]). These

two conjectures are both famous long-standing open problems in convex geometry. Thus, while

we believe that similar results should hold for general log-concave, it seems such claims would

require new ideas.

Another evidence for the possible difficulty of determining optimal convergence rates for

general log-concave vectors can be seen from the case p = 1. In the standard setting of the

CLT, the best known convergence rates ( [85, 106]), in quadratic Wasserstein distance, depend

on the Poincaré constant of the isotropic log-concave measure. Bounding the Poincaré constant

is precisely the object of the KLS conjecture. So, proving a convergence rate which does not de-

pend on the specific log-concave measure seems to be intimately connected with the conjecture.

This suggests the question might be a genuinely challenging one. On the brighter side, we re-

mark that the recent breakthrough of Chen ( [72]) towards the resolution of the KLS conjecture,

can prove useful in establishing such bounds.

2.3.1 High-level idea

We now present the idea behind the proof of Theorem 2.5 and detail the main steps. We first

provide an informal explanation of why standard techniques fail to give optimal bounds. We

may treat W p
n,d(µ) as a sum of independent random vectors and invoke Theorem 7 from [69]

(similar results will encounter the same difficulty). So, if X ∼ µ, optimistically, the theorem

will give,

W1(W p
n,d(µ), γ) ≤

E
[
‖X�p‖3

2

]
√
d

,

where we take the Euclidean norm of X�p when considered as a vector in Symp(Rn). Since

dim (Symp(Rn)) ' np, and we expect each coordinate of X�p to have magnitude, roughly
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O(1), Jensen’s inequality gives:

E
[∥∥X�p∥∥3

2

]
≥ E

[∥∥X�p∥∥2

2

] 3
2
& dim (Symp(Rn))

3
2 & n

3p
2 .

This is worse than the bound
√
n2p−1, achieved by Theorem 2.5.

The high-level plan of our proof is to use the fact that X�p has some low-dimensional

structure. We will construct a map which transports the standard Gaussian G, from the lower

dimensional space Rn into the law of X�p in the higher dimensional space Symp(Rn). In some

sense, the role of this transport map is to preserve the low-dimensional randomness coming from

Rn. The map can be constructed in two steps, first use a transport map ϕ, such that ϕ(G)
law
= X ,

and then take its tensor power ϕ(G)�p. We will use this map in order to construct a Stein kernel

and show that tame tails of the map’s derivative translate into small norms for the Stein kernel.

2.4 From transport maps to Stein kernels

We now explain how to construct a Stein kernel from a given transport map. For the rest of this

section let ν be a measure on RN and Y ∼ ν. Recall the definition of a Stein kernel; A matrix-

valued map, τ : RN →MN(R), is a Stein kernel for ν, if for every smooth f : RN → RN ,

E [〈Y, f(Y )〉] = E [〈τ(Y ), Df(Y )〉HS] .

Our construction is based on differential operators which arise naturally when preforming anal-

ysis in Gaussian spaces. We incorporate into this construction the idea of considering transport

measures between spaces of different dimensions. For completeness, we give all of the neces-

sary details, but see [138, 194] for a rigorous treatment.

2.4.1 Analysis in finite dimensional Gauss space

We let γ stand for the standard Gaussian measure in RN and consider the Sobolev subspace of

weakly differentiable functions,

W 1,2(γ) := {f ∈ L2(γ)|f is weakly differntiable, and Eγ ‖Df‖2
2 <∞}.

where D : W 1,2(γ)→ L2(γ,RN) is the natural (weak) derivative operator. We will mainly care

about the fact that locally-Lipschitz functions are weakly differentiable the reader is referred to

the second chapter of [254] for the necessary background on Sobolev spaces.

The divergence δ is defined to be the formal adjoint of D, so that for g : RN → RN ,

Eγ [〈Df, g〉] = Eγ [fδg] .
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δ is given explicitly by the relation

δg(x) = 〈x, g(x)〉 − div(g(x)),

where div(g(x)) =
N∑
i=1

∂gi
∂xi

(x).

The Ornstein-Uhlenbeck (OU) operator is now defined by L := −δ ◦ D. On functions,

L operates as Lf(x) = −xDf(x) + ∆f(x). The operator L also serves as the infinitesimal

generator of the OU semi-group ( [196, Proposition 1.3.6]). That is,

L =
d

dt
Pt

∣∣∣
t=0
,

where

Ptf(x) := EN∼γ
[
f(e−tx+

√
1− e−2tN)

]
. (2.8)

The following fact, which may be proved by the Hermite decomposition of L2(γ), will be use-

ful; There exists an operator, denoted L−1 such that LL−1f = f . In particular, on the subspace

of functions whose Gaussian expectation vanishes, L−1 is the inverse of L ( [194, Proposition

2.8.11]).

We now introduce a general construction for Stein kernels. By a slight abuse of notation,

even when working in different dimensions, we will refer to the above differential operators as

the same, as well as extending them to act of vector and matrix valued functions. Note that,

in particular, if f is a vector-valued function and g is matrix-valued of compatible dimensions,

then,

Eγ [〈Df, g〉HS] = Eγ [〈f, δg〉] .

Lemma 2.6. Let γm be the standard Gaussian measure on Rm and let ϕ : Rm → RN be weakly

differentiable. Set ν = ϕ∗γm and suppose that
∫
RN

xdν = 0. Then, if the following expectation

is finite for ν-almost every x ∈ RN ,

τϕ(x) := Ey∼γm
[
(−DL−1)ϕ(y)(Dϕ(y))T |ϕ(y) = x

]
,

is a Stein kernel of ν.

Proof. Let f : RN → RN be a smooth function and set Y ∼ ν,G ∼ γm. Our goal is to show

E [〈Df(Y ), τϕ(Y )〉HS] = E [〈f(Y ), Y 〉] .

Before turning to the calculations let us make explicit the dimensions of the objects which will

be involved. Df is an N ×N matrix, while Dϕ is an N ×m matrix. Since DL−1ϕ is also an
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N ×m matrix, it holds that τϕ is an N ×N matrix, as required. Now,

E [〈Df(Y ), τϕ(Y )〉HS] = E
[
〈Df(Y ),E

[
(−DL−1)ϕ(G)(Dϕ(G))T |ϕ(G) = Y

]
〉HS
]

= E
[
〈Df(ϕ(G))Dϕ(G), (−DL−1)ϕ(G)〉HS

]
= E

[
〈D(f ◦ ϕ(G)), (−DL−1)ϕ(G)〉HS

]
(Chain rule)

= E
[
〈f ◦ ϕ(G), (−δDL−1)ϕ(G)〉

]
(D is adjoint to δ)

= E
[
〈f ◦ ϕ(G), LL−1ϕ(G)〉

]
L = −δD

= E [〈f ◦ ϕ(G), ϕ(G)〉] E[ϕ(G)] = 0

= E [〈f(Y ), Y 〉] . ϕ∗γm = ν

In the first line, the inner product is taken in the space of N × N matrices and in the next

two lines, in the space of N ×m matrices. Also, note that in the penultimate equality the fact

E [ϕ(G)] was important for the cancellation of LL−1.

The above formula suggests that one might control the the kernel τϕ by controlling the

gradient of the transport map, ϕ. This will be the main step in proving Theorem 2.5. The

following formula from [194, Proposition 29.3] will be useful:

−DL−1ϕ =

∞∫
0

e−tPtDϕdt. (2.9)

We thus have the corollary:

Corollary 2.7. With the same notations as in Lemma 2.6,

τϕ(x) =

∞∫
0

e−tEy∼γm
[
PtDϕ(y) (Dϕ(y))T |ϕ(y) = x

]
dt.

We remark that the construction is based on ideas which have appeared implicitly in the

literature, at least as far as [68] (see [194] for a more modern point of view). Our main novelty

lies in interpreting the transport map, used in the construction, as an embedding from a low-

dimensional space. Other constructions of Stein kernels use different ideas, such as Malliavin

calculus ( [196]), other notions of transport problems ( [112]) or calculus of variation ( [83]).

However, as will become clear in the next section, our construction seems particularly well

adapted to the current problem, since it is well behaved with respect to compositions. That is, if

ψ, ϕ are two compatible maps and τϕ is ’close’ to the identity, then as long ψ is not too wild, the

same can be said about τψ◦ϕ. In our setting, one should think about ϕ as the transport map and

ψ(v) := v⊗p. It is an interesting question whether other constructions for Stein kernels could

be used in a similar way.
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As a warm up we present a simple case in which we can show that the Stein kernel obtained

from the construction is bounded almost surely.

Lemma 2.8. Let the notations of Lemma 2.6 prevail and suppose that ‖Dϕ(x)‖op ≤ 1 almost

surely. Then

‖τϕ(x)‖op ≤ 1,

almost surely.

Proof. From the representation (2.8) and by Jensen’s inequality, Pt is a contraction. That is, for

any function h,

Ey∼γm [Pt(h(y))h(y)] ≤ Ey∼γm
[
h(y)2

]
. (2.10)

So, from Corollary 2.7 and since ‖Dϕ(x)‖op ≤ 1, we get,

‖τϕ(x)‖op ≤
∞∫

0

e−tEy∼γm
[
‖PtDϕ(y) (Dϕ(y))‖op |ϕ(y) = x

]
dt

≤
∞∫

0

e−tEy∼γm
[
Pt

(
‖Dϕ(y)‖op

)
‖Dϕ(y)‖op |ϕ(y) = x

]
dt

≤
∞∫

0

e−tEy∼γm
[
‖Dϕ(y)‖2

op |ϕ(y) = x
]
dt ≤ 1.

The first inequality follows from Jensen’s inequality. The second inequality uses the fact that the

matrix norm is sub-multiplicative combined with Jensen’s inequality for Pt. The last inequality

is the contractive property (2.10) and the a-priori bound on ‖Dϕ‖op.

2.5 Proof of Theorem 2.5

Let A : (Rn)⊗p → V be any linear transformation such that A (X⊗p − E [X⊗p]) is isotropic,

and let τ be a Stein kernel for X⊗p − E [X⊗p]. In light of (17), we know that

S2
(
A
(
X⊗p − E

[
X⊗p

]))
≤ E

[∥∥Aτ (X⊗p − E [X⊗p])AT − Id
∥∥2

HS

]
≤ 2E

[∥∥Aτ (X⊗p − E [X⊗p])AT∥∥2

HS

]
+ 2 ‖Id‖2

HS

≤ 2 ‖A‖2
op E

[∥∥τ (X⊗p − E [X⊗p])∥∥2

HS

]
+ 2 dim(V ).

Thus, by combining the above with (2.4), Theorem 2.5 is directly implied by the following

lemma.
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Lemma 2.9. Let X be an isotropic random vector in Rn and let ϕ : Rn → Rn be differentiable

almost everywhere, such that ϕ(G)
law
= X , where G is the standard Gaussian in Rn. Then, for

any integer p ≥ 2, there exists a Stein kernel τ of X⊗p − E [X⊗p], such that

E
[∥∥τ (X⊗p − E [X⊗p])∥∥2

HS

]
≤ p4n

√
E
[
‖X‖8(p−1)

2

]√
E
[
‖Dϕ(G)‖8

op

]
.

Proof. Consider the map u → ϕ(u)⊗p − E [X⊗p] , which transports G to X⊗p − E [X⊗p]. For

a vector v ∈ Rn we will denote ṽ⊗p := v⊗p − E [X⊗p]. Corollary 2.7 shows that the function

defined by,

τ(ṽ⊗p) : =

∞∫
0

e−tE
[
Pt
(
D(ϕ(G)⊗p)

)
·D(ϕ(G)⊗p)T |ϕ(G)⊗p = v⊗p

]
dt,

and which vanishes on tensors which are not of the form ṽ⊗p, is a Stein kernel for X⊗p −
E [X⊗p]. Note that for any two matrices A,B,

‖AB‖HS ≤
√

rank(A) ‖A‖op ‖B‖op .

Thus, by applying Jensen’s inequality several times, both for the integrals and for Pt, we have

the bound

E
[∥∥τ(X⊗p)

∥∥2

HS

]
≤

∞∫
0

e−tE
[∥∥Pt (D(ϕ(G)⊗p)

)
·D(ϕ(G)⊗p)T

∥∥2

HS

]
dt

≤
∞∫

0

e−tE
[
rank(D(ϕ(G)⊗p))

∥∥D(ϕ(G)⊗p)
∥∥2

op
Pt

(∥∥D(ϕ(G)⊗p)
∥∥2

op

)]
dt

≤
∞∫

0

ne−tE
[∥∥D(ϕ(G)⊗p)

∥∥2

op
Pt

(∥∥D(ϕ(G)⊗p)
∥∥2

op

)]
dt.

To see the why the last inequality is true, observe that v → ϕ(v)⊗p is a map from Rn to Rnp ,
hence D(ϕ(G)⊗p) is an np × n matrix, which leads to rank(D(ϕ(G)⊗p)) ≤ n. We now use the

fact that Pt is a contraction, as in (2.10), so that for every t > 0,

E
[∥∥D(ϕ(G)⊗p)

∥∥2

op
Pt

(∥∥D(ϕ(G)⊗p)
∥∥2

op

)]
≤ E

[∥∥D(ϕ(G)⊗p)
∥∥4

op

]
.

So,

E
[∥∥τ(X⊗p)

∥∥2

HS

]
≤ nE

[∥∥D(ϕ(G)⊗p)
∥∥4

op

]
.

We may realize the map v → ϕ(v)⊗p as the p-fold Kronecker power (the reader is referred to

[206] for the relevant details concerning the Kronecker product) of ϕ(v). With ⊗ now standing
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for the Kronecker product, the following Leibniz law holds for the Jacobian:

D
(
ϕ(x)⊗p

)
=

p∑
i=1

ϕ(x)⊗i−1 ⊗Dϕ(x)⊗ ϕ(x)⊗p−i.

The Kronecker product is multiplicative with respect to singular values, and for any A1, ..., Ap

matrices,

‖A1 ⊗ ...⊗ Ap‖op =

p∏
i=1

‖Ai‖op .

We then have,

E
[∥∥τ(X⊗p)

∥∥2

HS

]
≤ nE

[∥∥D(ϕ(G)⊗p)
∥∥4

op

]
= nE

∥∥∥∥∥
p∑
i=1

ϕ(G)⊗i−1 ⊗Dϕ(G)⊗ ϕ(G)⊗p−i

∥∥∥∥∥
4

op


≤ nE

( p∑
i=1

∥∥ϕ(G)⊗i−1 ⊗Dϕ(G)⊗ ϕ(G)⊗p−i
∥∥
op

)4
 ,

where the operator norm here is considered on the space of np× n matrices. The multiplicative

property of the Kronecker product shows that for every i = 1, . . . p,

∥∥ϕ(G)⊗i−1 ⊗Dϕ(G)⊗ ϕ(G)⊗p−i
∥∥
op

= ‖ϕ(G)‖(p−1)
2 ‖Dϕ(G)‖op ,

where now the operator norm is considered on the space of n × n matrices, and one can think

about the Euclidean norm as the operator on the space of 1× n matrices. Thus,

E
[∥∥τ(X⊗p)

∥∥2

HS

]
≤ np4E

[
‖ϕ(G)‖4(p−1)

2 ‖Dϕ(G)‖4
op

]
≤ np4

√
E
[
‖ϕ(G)‖8(p−1)

2

]√
E
[
‖Dϕ(G)‖8

op

]
= np4

√
E
[
‖X‖8(p−1)

2

]√
E
[
‖Dϕ(G)‖8

op

]
,

where the last inequality is Cauchy-Schwartz.

2.6 Unconditional log-concave measures; Proof of Theorem
2.2

We now wish to apply Theorem 2.5 to unconditional measures which are uniformly log-concave.

In this case, we begin by showing that the covariance of W̃ p
n,d(µ) is well conditioned.
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Lemma 2.10. Let µ be an unconditional log-concave measure on Rn and let Σ̃p(µ) denote the

covariance matrix W̃ p
n,d(µ). Then, there exists a constant cp > 0, depending only on p, such

that if λ̃min stands for the smallest eigenvalue of Σ̃p(µ), then

cp ≤ λ̃min.

Proof. We write X = (X(1), ..., X(n)) and observe that Σp(µ) is diagonal. Indeed, if 1 ≤ j1 <

j2 < ... < jp ≤ n and 1 ≤ j′1 < j′2 < ... < j′p ≤ n are two different sequences of indices then

the covariance between X(j1) · ... ·X(jp) and X(j′1) · ... ·X(j′p) can be written as

E
[
X(i1) ·Xn2

(i2) · ... ·X
nk
(ik)

]
,

where p + 1 ≤ k ≤ 2p and for every i = 2, ..., k, ni ∈ {1, 2}. By (2.2), those terms vanish.

Thus, in order to prove the lemma, it will suffice to show that for every set of distinct indices

j1, ..., jp,

cp ≤ E
[(
X(j1) · ... ·X(jp)

)2
]
,

for some constant cp > 0, which depends only on p. If we consider the random isotropic and

log-concave vector (Xj1 , ..., Xjp) in Rp, the existence of such a constant is assured by the fact

that the density of this vector is uniformly bounded from below on some ball around the origin

(see [170, Theorem 5.14]).

We now prove Theorem 2.2.

Proof of Theorem 2.2. Set P : (Rn)⊗p → S̃ym
p

(Rn) to be the linear projection operator and

Σ̃p(µ) to be as in Lemma 2.10. DenoteA =
√

Σ̃−1
p (µ)P . Then,A (X⊗p − E [X⊗p]) is isotropic

and has the same law as
√

Σ̃−1
p (µ)

∗
W̃ p
n,d(µ). The lemma implies

‖A‖2
op ≤

1

cp
.

As X is log-concave and isotropic, from (2.6), we get√
E
[
‖X‖8(p−1)

2

]
≤ Cpn

2p−2.

X is also L-uniformly log-concave. So, as in (2.7), if ϕµ is the Brenier map, sending the

standard Gaussian G to X , √
E
[
‖Dϕµ(G)‖8

op

]
≤ 1

L4
.

Combining the above displays with Theorem 2.5, gives the desired result.
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2.7 Product measures; Proof of Theorem 2.3

As mentioned in Section 2.3, when µ is a product measure, transport bounds on the marginals

of µ may be used to construct a transport map ϕ whose derivative satisfies an L∞ bound of the

form,

‖Dϕ(x)‖op ≤ α(1 + ‖x‖β∞). (2.11)

for some α, β ≥ 0. Such conditions can be verified for a wide variety of product measures.

For example, it holds, a fortiori, when the marginals of µ are polynomials of the standard one-

dimensional Gaussian with bounded degrees. Furthermore, we mention now two more cases

where the one-dimensional Brenier map is known to have tame growth. Those estimates will

serve as the basis for the proof of Theorem 2.3.

In [83] it is shown that if µ is an isotropic log-concave measure in R, and ϕµ is its associated

Brenier map, then for some universal constant C > 0,

ϕ′µ(x) ≤ C(1 + |x|). (2.12)

If, instead, µ satisfies an L1-Poincaré inequality with constant c` > 0, then for another universal

constant C > 0

ϕ′µ(x) ≤ C
1

c`
(1 + x2).

Thus, for log-concave product measures (2.11) holds with β = 1 and for products of measures

which satisfy the L1-Poincaré inequality it holds with β = 2. Using these bounds, Theorem 2.3

becomes a consequence of the following lemma.

Lemma 2.11. Let X be a random vector in Rn and let G stand for the standard Gaussian.

Suppose that for someϕ : Rn → Rn, ϕ(G)
law
= X , and thatϕ is differentiable almost everywhere

with

‖Dϕ(x)‖op ≤ α(1 + ‖x‖β∞),

for some β, α > 0. Then, there exists a constant Cβ , depending only on β, such that

E
[
‖Dϕ(x)‖8

op

]
≤ Cβα

8 log(n)4β.

Proof. For any x, y ≥ 0, the following elementary inequality holds,

(x+ y)8 ≤ 27
(
x8 + y8

)
.

Thus, we begin the proof with,

E
[
‖Dϕ(G)‖8

op

]
≤ α8E

[
(1 + ‖G‖β∞)8

]
≤ 256α8E

[
‖G‖8β

∞

]
.
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Observe that the density function of ‖G‖∞ is given by nψ · Φn−1, where ψ is the density of the

standard Gaussian in R and Φ is its cumulative distribution function. Since the product of log-

concave functions is also log-concave, we deduce that ‖G‖∞ is a log-concave random variable.

From (2.6), we thus get

E
[
‖G‖8β

∞

]
≤ C ′βE

[
‖G‖2

∞
]4β

,

whereC ′β depends only on β. The proof is concluded by applying known estimates toE
[
‖G‖2

∞
]
.

Proof of Theorem 2.3. We first observe that, since µ is an isotropic product measure, W̃ p
n,d(µ)

is an isotropic random vector in S̃ym
p
(Rn). Thus, the matrix A in Theorem 2.5, reduces to a

projection matrix and ‖A‖op = 1.

Let X ∼ µ. For the first case, we assume that X is log-concave. Since it is also isotropic, from

(2.6) there exists a constant C ′p depending only p, such that√
E
[
‖X‖8(p−1)

2

]
≤ C ′pn

2p−2. (2.13)

We now let ϕµ stand for the Brenier map between the standard Gaussian G and X . Since X has

independent coordinates it follows from (2.12) that for some absolute constant C > 0.

‖Dϕ(x)‖op ≤ C(1 + ‖x‖∞).

In this case, Lemma 2.11 gives:√
E
[
‖Dϕ(G)‖8

op

]
≤ C ′ log(n)2, (2.14)

where C ′ > 0 is some other absolute constant. Plugging these estimates into Theorem 2.5 and

taking Cp = 2C ′ · C ′p · p4 shows Point 1.

The proof of Point 2 is almost identical and we omit it. For Point 3, when each marginal of

µ is a polynomial of the standard Gaussian, observe that the map Q̃ : Rn → Rn,

Q̃(x1, ..., xn) = (Q(x1), ..., Q(xn)),

is by definition a transport map between G and X . Since Q is a degree k polynomial, there

exists some constant CQ, such that

Q′(x) ≤ CQ(1 + |x|k−1).
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So, from Lemma 2.11, there is some constant C ′Q,p, such that√
E
[∥∥∥DQ̃(G)

∥∥∥8

op

]
≤ C ′Q,p log(n)2(k−1).

Moreover, using hypercontractivity (see [140, Theorem 5.10]), since X is given by a degree k

polynomial of the standard Gaussian, we also have the following bound on the moments of X:√
E
[
‖X‖8(p−1)

2

]
≤ (8p)2kpE

[
‖X‖2

2

]2p−2
= (8p)2kpn2p−2.

Using the above two displays in Theorem 2.5 finishes the proof.

2.8 Extending Theorem 2.3; Proof of Theorem 2.4

We now fix X ∼ µ to be an unconditional isotropic log-concave measure on Rn with indepen-

dent coordinates. If Σ2(µ) stands for the covariance matrix of W 2
n,d(µ), then, using the same

arguments as in the proof of Theorem 2.3, it will be enough to show that Σ2(µ) is bounded

uniformly from below. Towards that, we first prove:

Lemma 2.12. Let Y be an isotropic log-concave random variable in R. Then

Var(Y 2) ≥ 1

100
.

Proof. Denote by ρ the density of Y . We will use the following 3 facts, pertaining to isotropic

log-concave densities in R (see Section 5.2 in [170]).

• ρ is uni-modal. That is, there exists a point x0 ∈ R, such that ρ is non-decreasing on

(−∞, x0) and non-increasing on (x0,∞).

• ρ(0) ≥ 1
8

and ρ(x) ≤ 1, for every x ∈ R.

•
∫
|x|≥2

ρ(x)dx ≤ 1
e
.

The first observation is that either ρ
(

1
9

)
≥ 1

10
, or ρ

(
−1

9

)
≥ 1

10
. Indeed, if not, then as ρ is

uni-modal and ρ(0) ≥ 1
10

,

2∫
−2

ρ(x)dx ≤

1
9∫

− 1
9

ρ(x)dx+
4

10
≤ 2

9
+

4

10
< 1− 1

e
,
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which is a contradiction. We assume, without loss of generality, that ρ
(

1
9

)
≥ 1

10
. Similar

considerations then show

Var(Y 2) =

∫
R

(x2 − 1)2ρ(x)dx ≥ 1

10

1
9∫

0

(x2 − 1)2dx ≥ 1

100
.

Using the lemma, we now prove Theorem 2.4.

Proof of Theorem 2.4. First, as in Lemma 2.10, the product structure of µ implies that Σ2(µ),

the covariance matrix of W 2
n,d(µ), is diagonal. Write X =

(
X(1), ..., X(n)

)
. There are two types

of elements on the diagonal:

• The first corresponds to elements of the form Var(X(i)X(j)). For those elements, by

independence, Var(X(i)X(j)) = 1.

• The other type of elements are of the form Var
(
X2

(i)

)
. By Lemma 2.12, Var(X2

i ) ≥ 1
100

.

So, if P : (Rn)⊗2 → Sym2(Rn) is the projection operator, we have that∥∥∥Σ−
1
2P
∥∥∥2

op
≤ 100.

The estimates (2.13) and (2.14) are valid here as well. Thus, Theorem 2.5 implies the result.

2.9 Non-homogeneous sums

In this section we consider a slight variation on the law of W p
n,d(µ). Specifically, we let α :=

{αi}di=1 ⊂ R+, be a sequence of positive numbers and Xi ∼ µ be i.i.d. random vectors in Rn.

Define W p
α,d(µ) as the law of the non-homogeneous sum,

1

‖α‖2

d∑
i=1

αi
(
X�pi − E

[
X�pi

])
, (2.15)

where for q > 0, ‖α‖qq :=
d∑
i=1

αqi . The marginal law W̃ p
α,d(µ) is defined accordingly. The case

αi ≡ 1 corresponds to W p
n,d(µ). As it turns out, controlling the Stein discrepancy of W̃ p

α,d(µ)

poses no new difficulties and Theorem 2.5 may be readily adapted to deal with these laws as

well. The basic observation is that the calculation in (18) also applies to this case.
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Indeed, in the general case, if Yi are i.i.d. isotropic random vectors with Stein kernel given

by τY , then, Sα := 1
‖α‖2

d∑
i=1

αiYi is isotropic as well, and it has a Stein kernel given by

τSα(x) =
1

‖α‖2
2

d∑
i=1

α2
iE [τY (Yi)|Sα = x] .

By repeating the calculations which led to (20), we may see

S2(Sα) ≤ E
[
‖τSα(Sα)− Id‖2

HS

]
= E

∥∥∥∥∥ 1

‖α‖2
2

d∑
i=1

α2
iE [τY (Yi)− Id|Sα]

∥∥∥∥∥
2

HS


≤ 1

‖α‖4
2

d∑
i=1

α4
iE [‖τY (Yi)− Id]‖2

HS =
‖α‖4

4

‖α‖2
2

E
[
‖τY (Y )− Id‖2

HS

]
,

which implies

S2(Sα) ≤ ‖α‖
4
4

‖α‖4
2

S2(Y ).

Combining this inequality with Lemma 2.9 we obtain the following variant of Theorem 2.5.

Theorem 2.13. With the same notations as in Theorem 2.5,

S2
(
A∗W

p
α,d(µ)

)
≤ 2
‖α‖4

4

‖α‖4
2

(
‖A‖2

op p
4 · n

√
E
[
‖X‖8(p−1)

2

]√
E
[
‖Dϕ(G)‖8

op

]
+ np

)
.

Thus, all of our results apply to non-homogeneous sums as well. We state here only the

analogue for uniformly log-concave measures as reference.

Theorem 2.14. Let µ be an isotropic L-uniformly log-concave measure on Rn which is also

unconditional. Denote Σ−
1
2 =

√
Σ̃p(µ)−1, where Σ̃p(µ) is the covariance matrix of W̃α,d(µ).

Then, there exists a constant Cp, depending only on p, such that

S2
(

Σ
− 1

2
∗ W̃ p

α,d(µ)
)
≤ Cp
L4
n2p−1‖α‖4

4

‖α‖4
2

.

By specializing to µ = γ and p = 2, the theorem gives the same bound as in (2.3), which

was obtained in [102].

As noted in the introduction, when p = 2, the symmetric matrix defined by (2.15) can be

realized as normalized version of a Gram matrix XXT , where X is an n × d matrix with inde-

pendent columns.

By taking a different perspective on Theorem 2.14, we now show that, in some special cases,

one may also allow dependencies between the columns of X. Let Σ be a d× d positive definite
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matrix and {Xi}ni=1 i.i.d random vectors in Rd with common law N (0,Σ). Suppose that for

every i = 1, ..., d, Σi,i = 1 and define XΣ to be an n × d matrix whose ith row equals Xi. So,

the rows of XΣ are independent while its columns might admit dependencies. Now, set

Wn(Σ) :=
1√
d

(
XΣXTΣ − d · Id

)
.

Our result will apply by a change of variables. If U is a d × d orthogonal matrix which diago-

nalizes Σ the following identity holds:

XΣXTΣ = (XΣU) (XΣU)T ,

with the columns of XΣU being independent. Specifically, the rows of XΣ are given by UTXi.

Thus, if {αi}di=1 are the eigenvalues of Σ, then for every i, j, (XΣU)i,j ∼ N (0, αj). This implies

that W 2
α,d(γ) is the law of the upper triangular part of

√
d

‖α‖22
Wn(Σ). So,

S2

( √
d

‖α‖2
2

Wn(Σ)

)
≤ Cn3‖α‖4

4

‖α‖4
2

= Cn3 Tr (Σ4)

Tr (Σ2)2 .

As a particular case, we can assume that the rows of XΣ form a stationary Gaussian process.

Let s : N → R be a function with s(0) = 1 and define a symmetric d × d matrix by (Σs)i,j =

s(|i− j|). If Σs is positive definite, then the proof of Theorem 1.2 in [194] shows:

W2
1 (Wn(Σs), Gs) ≤ Cn3 1

d2

d∑
i,j,k,`=1

s(|i− j|)s(|j − k|)s(|k − `|)s(|`− i|),

where Gs is the law of a Wigner matrix, normalized to have the same covariance structure as

Wn(Σs). Since s(0) = 1, it is clear that Tr(Σ2
s)

2 ≥ d2 and we also have

Tr(Σ4
s) =

d∑
i,j,k`=1

s(|i− j|)s(|j − k|)s(|k − `|)s(|`− i|).

Thus, our result is directly comparable to the one in [194].
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3
A Central Limit Theorem for Neural

Networks in a Space of Functions

3.1 Introduction

In the past decade, artificial neural networks have experienced an unprecedented renaissance.

However, the current theory has yet to catch-up with the practice and cannot explain their im-

pressive performance. Particularly intriguing is the fact that over-parameterized models do not

tend to over-fit, even when trained to zero error on the training set. Owing to this seemingly

paradoxical fact, researchers have focused on understanding the infinite-width limit of neural

networks. This line of research has led to many important discoveries such as the ‘lazy-training’

regime [75, 234] which is governed by the limiting ‘neural tangent kernel’ (see [139]), as well

as the ‘mean-field’ limit approach (see [148,175,176] for some examples) to study the training

dynamics and loss landscape.

The first to study the limiting distribution of a neural network at (a random) initialization was

Neal [189], who proved a Central Limit Theorem (CLT) for two-layered wide neural networks.

According to Neal’s result, when initialized with random weights, as the width of the network

goes to infinity, its law converges, in distribution, to a Gaussian process. Subsequent works have

generalized this result to deeper networks and other architectures ( [122,134,174,198,243,246,

247]). This correspondence between Gaussian processes and neural networks has proved to be

highly influential and has inspired many new models (see [246] for a thorough review of these
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models).

Towards supplying a theoretical framework to study real world neural networks, one impor-

tant challenge is to understand the extent to which existing asymptotic results, which essentially

only apply to infinite networks, may also be applied to finite ones. While there have been sev-

eral works in this direction (c.f. [4, 11, 12, 16, 123, 132, 245]), to the best of our knowledge, all

known results consider finite-dimensional marginals of the random process and the question of

finding a finite-width quantitative analog to Neal’s CLT, which applies in a functional space,

has remained open. The main goal of this chapter is to tackle this question.

In essence, we prove a quantitative CLT in the space of functions. On a first glance, this is

a completely different setting than the classical CLT, even in high-dimensional regimes. The

function space is infinite-dimensional, while all quantitative bounds of CLT deteriorate with the

dimension ( [42,47,85]). However, by exploiting the special structure of neural networks we are

able to reduce the problem to finite-dimensional sets, where we capitalize on recent advances

made in understanding the rate of convergence of the high-dimensional CLT. In particular, we

give quantitative bounds, depending on the network’s width and the dimension of the input,

which show that, when initialized randomly, wide but finite networks can be well-approximated

by a Gaussian process. The functional nature of our results essentially means that when consid-

ering the joint distribution attained on a finite set of inputs to the function, ours bounds do not

deteriorate as the number of input points increases.

Roughly speaking, we prove the following results:

• We first consider two-layered networks with polynomial activation functions. By embed-

ding the network into a high-dimensional tensor space we prove a quantitative CLT, with

a polynomial rate of convergence in a strong transportation metric.

• We next consider general activations and show that under a (very mild) integrability as-

sumption, one can reduce this case to the polynomial case. This is done at the cost of

weakening the transportation distance. The rate of convergence depends on the smooth-

ness of the activation and is typically sub-polynomial.

Organization: The rest of this chapter is devoted to describing and proving these results.

In Section 3.2 we give the necessary background concerning random initializations of neural

networks and we introduce a metric between random processes on the sphere. Our main results

are stated in Section 3.3. In Section 3.4 we prove results which concern polynomial activations,

while in Section 3.5 we consider general activations.
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3.2 Background

Let σ : R → R and fix a dimension n > 1. A two-layered network with activation σ is a

function N : Rn → R, of the form

N(x) =
k∑
i=1

ciσ (ui · x) ,

where ui ∈ Rn, ci ∈ R, for every i = 1, . . . , k. We will refer to k as the width of the net-

work. In most training procedures, it is typical to initialize the weight as i.i.d. random vectors.

Specifically, let {wi}ki=1 be i.i.d. as standard Gaussians in Rn and let {si}ki=1 be i.i.d. with

P(s1 = 1) = P(s1 = −1) = 1
2
. We consider the random network,

Pkσ(x) :=
1√
k

k∑
i=1

siσ (wi · x) .

Let Sn−1 stand for the unit sphere in Rn. By restricting our attention to x ∈ Rn, with ‖x‖ = 1,

we may consider Pkσ as a random process, indexed by Sn−1. In other words, Pkσ is a random

vector in L2(Sn−1), equipped with its canonical rotation-invariant probability measure.

A Gaussian process is a random vector G ∈ L2(Sn−1), such that for any finite set {xj}mj=1 ⊂
Sn−1 the random vector {G(xj)}mj=1 ∈ Rm, has a multivariate Gaussian law. Since Pkσ is a

sum of independent centered vectors, standard reasoning suggests that as k → ∞, Pkσ should

approach a Gaussian law in L2(Sn−1), i.e. a Gaussian process. Indeed, this is precisely Neal’s

CLT, which proves the existence of a Gaussian process G, such that Pkσ k→∞−−−→ G, where the

convergence is in distribution.

To make this result quantitative, we must first specify a metric. Our choice is inspired

by the classical Wasserstein transportation in Euclidean spaces. The observant reader may

notice that our definition, described below, does not correspond to the p-Wasserstein distance

on L2(Sn−1), but rather the p-Wasserstein distance on Lp(Sn−1). We chose this presentation for

ease of exposition and its familiarity.

ForP ,P ′, random processes on the sphere, and p ≥ 1 we define the functional p-Wasserstein

distance as,

WFp(P ,P ′) := inf
(P,P ′)

 ∫
Sn−1

E
[
|P(x)− P ′(x)|p

]
dx

 1
p

,

where the infimum is taken over all couplings of (P ,P ′) and where dx is to be understood as

the normalized uniform measure on Sn−1. For p =∞ we defineWF∞ as,

WF∞(P ,P ′) := inf
(P,P ′)

E
[

sup
x∈Sn−1

|P(x)− P ′(x)|
]
.
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The notation Wp is reserved to the p-Wasserstein distance in finite-dimensional Euclidean

spaces.

There is a straightforward way to connect between the quadratic functional Wasserstein

distance on the sphere and the L2 distance in Gaussian space.

Lemma 3.1. Let f, g : R→ R, and γ, the standard Gaussian in R. Then,

WF2
2(Pkf,Pkg) ≤

∫
R

(f(x)− g(x))2dγ(x).

Proof. There is a natural coupling such that

WF2
2(Pkf,Pkg) ≤ 1

k

∫
Sn−1

E

( k∑
i=1

si(f(wi · x)− g(wi · x))

)2
 dx

=
1

k

∫
Sn−1

k∑
i=1

E
[
(f(wi · x)− g(wi · x))2] dx

=

∫
R

(f(x)− g(x))2dγ(x).

The first equality is a result of independence, while the second equality follows from the fact

that for any x ∈ Sn−1, wi · x ∼ γ.

3.3 Results

We now turn to describe the quantitative CLT convergence rates obtained by our method. Our

first result deals with polynomial activations.

Theorem 3.2. Let p(x) =
d∑

m=0

amx
m be a degree d polynomial. Then, there exists a Gaussian

process G on Sn−1, such that

WF2
∞(Pkp,G) ≤ Cd max

m
{|am|2}

(
n5d− 1

2

k

) 1
3

,

where Cd ≤ dCd, for some numerical constant C > 0.

According to the result, when the degree d is fixed, as long as k � n5d− 1
2 , Pkp is close to a

Gaussian process. One way to interpret the metricWF∞, in the result, is as follows. For any

finite set {xj}mj=1 ⊂ (Sn−1)
m, the random vector {Pkp(xj)}mj=1 ⊂ Rm converges to a Gaussian

random vector, uniformly in m. Let us also mention that while the result is stated for Gaussian
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weights, the Gaussian plays no special role here (as will become evident from the proof), and

the weights could be initialized by any symmetric random vector with sub-Gaussian tails.

One drawback of using polynomial activations is that the resulting network will always

be a polynomial of bounded degree, which limits its expressive power. For this reason, in

practice, neural networks are usually implemented using non-polynomial activations. By using

a polynomial approximation scheme in Gaussian space, we are able to extend our result to this

setting as well. We defer the necessary definitions and formulation of the result to Section 3.5,

but mention here two specialized cases of common activations.

We first consider the Rectified Linear Unit (ReLU) function, denoted as ψ(x) := max(0, x).

For this activation, we prove:

Theorem 3.3. There exists a Gaussian process G on Sn−1, such that,

WF2
2(Pkψ,G) ≤ C

(
log(n) log(log(k))

log(k)

)2

,

where C > 0 is a numerical constant.

The reader might get the impression that this is a weaker result than Theorem 3.2. Indeed,

the rate of convergence here is much slower. In order to get WF2(Pkψ,G) ≤ ε, the theorem

requires that k & n
1
ε

log logn. Also,WF2 is a weaker metric thanWF∞. Let us point out that

it may not be reasonable to expect similar behavior for polynomial and non-polynomial activa-

tions. The celebrated universal approximation theorem of Cybenko ( [88], see also [25, 166])

states that any function in L2(Sn−1) can be approximated, to any precision, by a sufficiently

wide neural network with a non-polynomial activation. Thus, as k → ∞, the limiting support

of Pkψ will encompass all of L2(Sn−1). This is in sharp contrast to a polynomial activation

function, for which the support of Pkp is always contained in some finite-dimensional subspace

of L2(Sn−1), uniformly in k.

Another explanation for the slow rate of convergence, is the fact that ψ is non-differentiable.

For smooth functions, the rate can be improved, but will still be typically sub-polynomial. As

an example, we consider the hyperbolic tangent activation, tanh(x) = ex−e−x
ex+e−x

.

Theorem 3.4. There exists a Gaussian process G on Sn−1, such that,

W2
2 (Pk tanh,G) ≤ C exp

(
− 1

C

√
log(k)

log(n) log(log(k))

)
,

where c > 0 is an absolute constant.

Finally, let us remark about possible improvements to our obtained rates. We do not know

whether the constant Cd in Theorem 3.5 is necessarily exponential, and we have made no effort

to optimize it. We do conjecture that the dependence on the ratio n5d− 1
2

k
is not tight. To support

this claim we prove an improved rate when the activation is monomial.
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Theorem 3.5. Let p(x) = xd for some d ∈ N. Then, there exists a Gaussian process G on Sn−1,

such that

WF2
∞(Pkp,G) ≤ Cd

n2.5d−1.5

k
,

where Cd ≤ dCd, for some numerical constant C > 0.

Remark 3.6. It is plausible the dependence on d and k could be further improved. Let us note

that when d = 2, the best rate one could hope for is proportional to n3

k
. This is a consequence of

the bounds proven in [56, 143], which show that if n3 � k, then when considered as a random

bi-linear form (or a Wishart matrix) Pkp is far from any Gaussian law. In fact, our proof of

Theorem 3.5 can actually be improved when d = 2 (or, in general, for even d), and we are able

to obtain the sharp rate n3

k
. It is an interesting question to understand the correct rates when

d > 2.

3.4 Polynomial processes

For this section, fix a polynomial p : R → R of degree d, p(x) =
d∑

m=0

amx
m. The goal of this

section is to show that when k is large enough, Pkp can be well approximated by a Gaussian

process in theWF∞ metric. Towards this, we will use the polynomial p to embed Rn into some

high-dimensional tensor space.

3.4.1 The embedding

For m ∈ N, we make the identification (Rn)⊗m = Rnm and focus on the subspace of symmetric

tensors, which we denote Sym
(
(Rn)⊗m

)
. If {ei}ni=1 is the standard orthonormal basis of Rn,

then an orthonormal basis for Sym
(
(Rn)⊗m

)
, is given by the set

{eI |I ∈ MIn(m)}.

where MIn(m) is the set of multi-indices,

MIn(m) = {(I1, . . . In) ∈ Nn|I1 + · · ·+ In = m},

With this perspective, we have eI = ⊗ni=1

(
e⊗Iii

)
, and we denote the inner product on Sym

(
(Rn)⊗m

)
by 〈·, ·〉m. We also use the following multi-index notation: if x = (x1, . . . , xn) ∈ Rn, we denote

xI =
n∏
i=1

xIii .

Define the feature space H := ⊕dm=0Sym
(
(Rn)⊗m

)
. If πm : H → Sym

(
(Rn)⊗m

)
is the
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natural projection, then an inner product on H may be defined by

〈v, u〉H :=
d∑

m=0

〈πmv, πmu〉m.

We further define the embedding P : Rn → H , P (x) =
d∑

m=0

√
|am|x⊗m, which induces a

bi-linear form on H as,

Q(u, v) :=
d∑

m=0

sign(am)〈πmu, πmv〉m.

Observe that Q is not necessarily positive definite, but still satisfies the following Cauchy-

Schwartz type inequality,

Q(u, v) ≤ ‖u‖H‖v‖H . (3.1)

Furthermore, it is clear that for any x, y ∈ Rn,

Q(P (x), P (y)) =
d∑

m=0

am(x · y)m = p (x · y) ,

and we have the identity,

Pkp(x) =
1√
k

k∑
i=1

sip(wi · x) =
1√
k

k∑
i=1

siQ(P (x), P (wi)) = Q

(
P (x),

1√
k

k∑
i=1

siP (wi)

)
.

(3.2)

Consider the random vector Xk := 1√
k

k∑
i=1

siP (wi) taking values in H . By the central limit the-

orem, we should expectXk to approach a Gaussian law. The next result shows that approximate

Gaussianity of Xk implies that the process Pkp is approximately Gaussian as well.

Lemma 3.7. Let G be a Gaussian random vector in H and define the random process on G in

Sn−1 by G(x) := Q(P (x), G). Then, G is a Gaussian process and,

WF2
∞(Pkp,G) ≤

(
d∑

m=0

|am|
)
W2

2 (Xk, G).

Proof. Let (Xk, G) be the optimal coupling so that W2
2 (Xk, G) = E [‖Xk −G‖2

H ] . We then
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have

WF∞(Pkp,G) ≤ E
[

sup
x∈Sn−1

|Pkp(x)− G(x)|
]

= E
[

sup
x∈Sn−1

|Q(P (x), Xk −G)|
]

≤ sup
x∈Sn−1

‖P (x)‖H
√
E [‖Xk −G‖2

H ] = sup
x∈Sn−1

‖P (x)‖H · W2(Xk, G),

where we have used (3.1) in the second inequality. Now, for any x ∈ Sn−1,

‖P (x)‖H =

√√√√ d∑
m=0

|am|〈x⊗m, x⊗m〉m =

√√√√ d∑
m=0

|am|.

So, we wish to show that the random vector Xk := 1√
k

k∑
i=I

siP (wi) is approximately Gaus-

sian inside H . For this, we will apply the following Wasserstein CLT bound, recently proven

by Bonis, in [47].

Theorem 3.8. [47, Theorem 1] Let Yi be i.i.d isotropic random vectors in RN and let G be the

standard Gaussian. Then, if Sk = 1√
k

k∑
i=1

Yi,

W2
2 (Sk, G) ≤

√
N

k

∥∥E [Y Y T ‖Y ‖2
2

]∥∥
HS

.

Since the theorem applies to isotropic random vectors, for which the covariance matrix is

the identity, we first need to understand Σ := Cov (P (w)). Let us emphasize the fact that Σ is a

bi-linear operator on H . Thus it can be regarded as a dim(H)× dim(H) positive semi-definite

matrix.

3.4.2 The covariance matrix

We first show that one may disregard small eigenvalues of Σ. Let (λj, vj) stand for the eigen-

value/vector pairs of Σ. Fix δ > 0 define Vδ = span (vj|λj ≤ δ) and let Πδ,Π
⊥
δ be the orthogo-

nal projection unto Vδ, V ⊥δ , respectively.

Lemma 3.9. Let G ∼ N (0,Σ) be a Gaussian in H , then

W2
2 (Xk, G) ≤ W2

2 (Π⊥δ Xk,Π
⊥
δ G) + 8ndδ.
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Proof. For any coupling (Xk, G) we have

W2
2 (Xk, G) ≤ E

[
‖Xk −G‖2] = E

[
‖ΠδXk − ΠδG‖2]+ E

[∥∥Π⊥δ Xk − Π⊥δ G
∥∥2
]

≤ 2E
[
‖ΠδG‖2]+ 2E

[
‖ΠδXk‖2]+ E

[∥∥Π⊥δ Xk − Π⊥δ G
∥∥2
]

≤ 4 dim(H)δ + E
[∥∥Π⊥δ Xk − Π⊥δ G

∥∥2
]
.

The proof concludes by taking the coupling for which Π⊥δ Xk,Π
⊥
δ G is optimal, and by noting

dim(H) ≤ 2nd.

Next, we bound from above the eigenvalues of Σ.

Lemma 3.10. Let Σ = Cov(P (w)), where P (w) is defined as in (3.2). Then

‖Σ‖op ≤ (4d)! max
m
{|am|}n

d−1
2 .

Proof. Let
∑
I

vIeI = v ∈ H be a unit vector, we wish to bound 〈v,Σv〉 = Var (〈P (w), v〉H)

from above. Let us denote the degree d polynomial
m∑
i=0

∑
I∈MIn(m)

√
|am|vIxI = q(x) = 〈P (x), v〉H .

We will prove the claim by induction on d. The case d = 1, is rather straightforward to check.

For the general case, we will use the Gaussian Poincaré inequality (see [194, Proposition 1.3.7],

for example) to reduce the degree. According to the inequality,

Var (〈P (w), v〉H) = Var (q(w)) ≤ E
[
‖∇q(w)‖2

2

]
=

n∑
i=1

E

[∣∣∣∣ ddxi q(w)

∣∣∣∣2
]

=
n∑
i=1

Var

(
d

dxi
q(w)

)
+ E

[
d

dxi
q(w)

]2

. (3.3)

Fix i = 1, . . . , n, if I ∈ MIn(m) we denote by ∂iI ∈ MIn(m− 1), to be a multi-index set such

that

∂iIj =

Ij if i 6= j

max(0, Ii − 1) if i = j.

With this notation, we have,

d

dxi
q(w) =

d

dxi

 d∑
m=0

∑
I∈MIn(m)

√
|am|wIvI


=

d∑
m=0

∑
I∈MIn(m)

√
|am|Iiw∂iIvI .
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Since d
dxi
q is a polynomial of degree d− 1, we thus get by induction,

Var

(
d

dxi
q(w)

)
≤ (4d− 4)! max

m
{|am|}n

d−2
2

d∑
m=0

∑
I∈MIn(m)

I2
i v

2
I .

Observe that Ii ≤ d and that for every I ∈ MIn(m), there are at most d different indices i ∈ [n],

for which Ii 6= 0. Therefore,

n∑
i=1

Var

(
d

dxi
q(w)

)
≤ d2(4d− 4)! max

m
{|am|}n

d−2
2

(
d
∑
I

v2
I

)
≤ (4d− 1)! max

m
{|am|}n

d−2
2 .

(3.4)

Furthermore, if for some j ∈ [n], ∂iIj is odd, then E
[
w∂iI

]
= 0. Otherwise,

|E
[
w∂iI

]
| ≤ |E

[
wd−1

1

]
| ≤
√
d!.

It is easy to verify that the size of the following set,

Ai = {I ∈ ∪dm=0MIn(m)|IiE[w∂iI ] 6= 0},

is at most (2n)
d−1

2 . Thus, since there are at most (2n)
d−1

2 elements which do not vanish, Cauchy-

Schwartz’s inequality shows,

E
[
d

dxi
q(w)

]2

≤ d2 max
m
{|am|}E

 d∑
m=0

∑
I∈MIn(m)

w∂iIvI

2

≤ (4d− 1)! max
m
{|am|}n

d−1
2

∑
I∈Ai

v2
I .

Note that if I ∈ Ai, then necessarily Ii is odd. In this case, it follows that for j 6= i, E
[
w∂jI

]
=

0. Hence, Ai ∩ Aj = ∅, and

n∑
i=1

E
[
d

dxi
q(w)

]2

≤ (4d− 1)! max
m
{|am|}n

d−1
2

n∑
i=1

∑
I∈Ai

v2
I

≤ (4d− 1)! max
m
{|am|}n

d−1
2

∑
I

v2
I = (4d− 1)! max

m
{|am|}n

d−1
2 . (3.5)

We now plug (3.4) and (3.5) into (3.3) to obtain

Var (〈P (w), v〉H) ≤ (4d)! max
m
{|am|}n

d−1
2 .
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Remark that, up to the multiplicative dependence on d, this bound is generally sharp. As an

example, when d = 2`− 1 is odd, one can consider the degree d polynomial,

q(x) =
1

n`/2

n∑
i1,...i`=1

xi1x
2
i2
. . . x2

i`
.

For this polynomial it may be verified that Var(q(w)) = Ω(n`−1) = Ω
(
n
d−1

2

)
.

3.4.3 A functional CLT for polynomial processes

Proof of Theorem 3.2. Let δ be some small number to be determined later and set X̃k = Σ−1/2Xk

and G̃, the standard Gaussian in H . By Lemma 3.9,

W2
2 (Xk, G) ≤ W2

2 (Π⊥δ Xk,Π
⊥
δ G) + 8ndδ

=W2
2 (Σ1/2Π⊥δ X̃k,Σ

1/2Π⊥δ G̃) + 8ndδ ≤ ‖Σ‖opW2
2 (Π⊥δ X̃k,Π

⊥
δ G̃) + 8ndδ.

We focus on the termW2
2 (Π⊥δ X̃k,Π

⊥
δ G̃) for which Theorem 3.8 may be invoked,

W2
2 (Π⊥δ X̃k,Π

⊥
δ G̃) ≤

√
dim(H)

k
E
[∥∥Π⊥δ Σ−1/2P (w)

∥∥4

H

]
≤
√

dim(H)

k
E
[
‖P (w)‖4

H

] ∥∥Π⊥δ Σ−1
∥∥2

op

≤
√

dim(H)

δ2k
E
[
‖P (w)‖4

H

]
.

In the first inequality, we have used Jensen’s inequality on the bound from Theorem 3.8. Let us

estimate E
[
‖P (w)‖4

H

]
. By definition,

E
[
‖P (w)‖4

H

]
= E

( d∑
m=0

|am|‖w⊗m‖2m
m

)2
 ≤ ( d∑

m=0

a2
m

)(
d∑

m=0

E
[
‖w‖4m

2

])

≤
(

d∑
m=0

a2
m

)(
d∑

m=0

(2m)!
(
4E
[
‖w‖2

2

])2m

)
≤
(

d∑
m=0

a2
m

)(
d∑

m=0

(2m)! (4n)2m

)

≤
(

d∑
m=0

a2
m

)
16d(2d)!n2d ≤ max

m
{a2

m}(100d)!n2d

The first inequality is Cauchy-Schwartz and in the second inequality we have used the fact that

‖w‖2 has sub-exponential tails.

Since dim(H) ≤ 2nd, it follows that,

W2
2 (Xk, G) ≤ ‖Σ‖op

(100d)!n
5d
2

δ2k
max
m
{a2

m}+ 8ndδ.
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We plug the estimate for ‖Σ‖op from Lemma 3.10 to deduce:

W2
2 (Xk, G) ≤ (110d)!n3d−0.5

δ2k
max
m
{|am|3}+ 8ndδ.

We now take δ =
(

(110d)!n2d−0.5 maxm{|am|3}
k

) 1
3

to obtain

W2
2 (Xk, G) ≤ 16 max

m
{|am|} ((110d)!)

n
5d−0.5

3

k
1
3

To finish the proof, define the Gaussian process G by G(x) = Q (P (x), G), and invoke Claim

3.7.

3.4.4 An improved rate for tensor powers

Throughout this section we assume that p(x) = xd for some d ∈ N. Under this assumption, we

improve Theorem 3.2. This improvement is enabled by two factors:

• A specialized CLT for tensor powers, proved in Chapter 2.

• An improved control on the eigenvalues of Σ, which allows to bypass Lemma 3.9.

Let us first state the result about approximating tensor powers by Gaussians. Note that for a

polynomial p as above, we have the embedding map P (x) = x⊗d. Since the image of P is

always a symmetric d-tensor, we allow ourselves to restrict the embedding map P and overload

notations, so that P : Rn → Sym
(

(Rn)⊗d
)

. In this case, for w ∼ N (0, Id), we have Σ :=

Cov(P (w)), and Xk := 1√
k

k∑
i=1

siP (wi). An immediate consequence of Theorems 2.2 and 2.5

is the following result:

Theorem 3.11. Let the above notations prevail. Then, there exists a Gaussian random vector

G, in Sym
(

(Rn)⊗d
)

, such that,

W2
2 (Xk, G) ≤ Cd‖Σ‖op‖Σ−1‖2

op

n2d−1

k
,

where Cd = dCd, for some universal constant C > 0.

Remark that the results in Chapter 2 actually deal with the random vector
√

Σ−1Xk. Since

we care about the un-normalized vector Xk we incur a dependence on ‖Σ‖op. We now show

how to bound from below the eigenvalues of Σ.

Lemma 3.12. Let λmin(Σ) stand for the minimal eigenvalue of Σ. Then

λmin(Σ) ≥ 1

d!
.
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Proof. Let v ∈ Sym
(

(Rn)⊗d
)

be a unit vector. We can thus write v =
∑
|I|=d

vIeI , with∑
I∈MIn(d)

v2
I = 1. Define the degree d homogeneous polynomial q : Rn → R, by q(x) =∑

I∈MIn(d)

vIx
I . In this case we have 〈v, P (w)〉 = q(w), and it will be enough to show,

Var (〈v, P (w)〉) = Var (q(w)) ≥ 1

d!
.

We will use the variance expansion for functions of Gaussian vectors, which can be found

at [194, Proposition 1.5.1]. According to this expansion, for any smooth enough function f :

Rn → R,

Var(f(w)) =
∞∑
m=1

‖E [∇mf(w)]‖2
m

m!
. (3.6)

Here ∇mf is the mth total derivative of f , which we regard as an element in (Rn)⊗m. In

particular, we have,

Var (q(w)) ≥
∥∥E [∇dq(w)

]∥∥2

d

d!
.

Now, if I 6= J are two multi-subsets of [n], with I, J ∈ MIn(d), we have

d

dxI
xJ = 0 and

d

dxI
xI = I!.

So, since ∇df = { d
dxI
q}I∈MIn(d),

‖E
[
∇df(w)

]
‖2
d =

∑
I∈MIn(d)

I!v2
I ≥ 1,

and

Var (q(w)) ≥ 1

d!
,

as required.

We are now in a position to prove Theorem 3.5.

Proof of Theorem 3.5. By combining Lemma 3.10 and Lemma 3.12, there exists some numer-

ical constant C ′ > 0, such that

‖Σ‖op‖Σ−1‖2
op ≤ dC

′dn
d−1

2 .

Thus, Theorem 3.11 shows that there exists a Gaussian vector G in Sym
(

(Rn)⊗d
)

, such that

W2
2 (Xk, G) ≤ dCd

n2.5d−1.5

k
,

95



for some other constant C > 0. Define the Gaussian process G(x) = 〈P (x), G〉, then Lemma

3.1 shows,

WF2
∞(Pkp,G) ≤ dCd

n2.5d−1.5

k
,

which concludes the proof. When d = 2, it is not hard to see that ‖Σ‖op can be bounded by an

absolute constant (see Lemma 3.13). In this case,

‖Σ‖op‖Σ−1‖2
op ≤ C,

which is the reason behind Remark 3.6.

3.4.5 Dimension-free covariance estimates for quadratic tensor powers

When considering the polynomial p(x) = x2, we can strictly improve upon Lemma 3.10 and

obtain dimension-free bounds. As noted in the proof of Theorem 3.5, this explains Remark 3.6.

Lemma 3.13. Suppose that d = 2. Then,

‖Σ‖op ≤ 1.

Proof. As in the proof of Lemma 3.12, let v =
n∑

i,j=1

vi,jei ⊗ ej , with
∑
v2
i,j = 1. Define

q(x) =
∑
i,j=1

vi,jxixj . It will suffice to bound Var(q(w)) from above. Since q is a quadratic

polynomial, the variance decomposition (3.6) gives,

Var(q(w)) = ‖E [∇q(w)] ‖2 +
1

2
‖E
[
∇2q(w)

]
‖2.

for i ∈ [n], we have d
dxi
q(w) =

n∑
j=1

(1 + δi,j)vi,jwj . So, E [∇q(w)] = 0. On the other hand,

‖E [∇q(w)] ‖2 =
n∑

i,j=1

E
[

d2

dxidxj
q(w)

]2

≤ 2
n∑
i=1

v2
i,j = 2,

and the claim is proven.

3.5 General activations

In this section we consider a general (non-polynomial) activation function σ : R→ R. Our goal

is to derive a quantitative CLT for the random process Pkσ. Our strategy will be to approximate

σ by some polynomial, for which Theorem 3.2 applies. We set γ to be the law of the standard
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Gaussian inR. Lemma 3.1 suggests that, in order to control the remainder in the approximation,

it would be beneficial to find a polynomial p, such that p and σ are close in L2(γ).

In L2(γ) there is a distinguished set of polynomials, the so-called Hermite polynomials.

Henceforth we denote hm to be the mth normalized Hermite polynomial,

hm(x) =
(−1)m√
m!

(
dm

dxm
e−

x2

2

)
e
x2

2 .

The reader is referred to [140] for the necessary definitions and proofs pertaining to Hermite

polynomials. We will mainly care about the fact that {hm}∞m=0 forms a complete orthonormal

system in L2(γ). Thus, assuming that σ ∈ L2(γ), it may be written as,

σ =
∞∑
m=0

σ̂mhm , where σ̂m :=

∫
R

σ(x)hm(x)dγ(x).

Let us also define the remainder function of σ as,

Rσ(d) =
∞∑

m=d+1

σ̂2
r .

If we define the degree d polynomial

pd :=
d∑

m=1

σ̂mhm, (3.7)

we then have,

‖σ − pd‖2
L2(γ) ≤ Rσ(d). (3.8)

With these notations, the main result of this section is:

Theorem 3.14. Suppose that σ ∈ L2(γ). Then, there exists a Gaussian process G on Sn−1, such

that,

WF2
2(Pkσ,G) ≤ C ′

max
m
|σ̂m|2

k
1
6

+Rσ

(
log(k)

C ′ log(n) log(log(k))

)
,

where C ′ > 0 is a numerical constant.

Before proving the theorem, we first focus on the coefficients of the polynomial pd, defined

in (3.7), with respect to the standard monomial basis. For this, we write hm, explicitly (see [140,

Chapter 3]) as,

hm(x) =
√
m!

m
2∑
j=0

(−1)j

j!(m− 2j)!2j
xm−2j.

Write now pd =
d∑

m=0

amx
m and let us estimate am.
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Lemma 3.15. It holds that

|am| ≤ max
i
|σ̂i|

2√
m!

2d.

Proof. We have:

|am| ≤
d∑

i=m

|σ̂i|
√
i!

m!((i−m)/2)!2(i−m)/2

≤ max
i
|σ̂i|

d∑
i=m

√
i!

m!((i−m)/2)!2(i−m)/2

≤ max
i
|σ̂i|

d∑
i=m

√
i!

m!
√

(i−m)!
= max

i
|σ̂i|

d∑
i=m

1√
m!

√(
i

m

)

≤ max
i
|σ̂i|

1√
m!

d∑
i=m

(
i

m

)
= max

i
|σ̂i|

1√
m!

(
d+ 1

m+ 1

)
≤ max

i
|σ̂i|

2√
m!

2d,

where the last equality is Pascal’s identity.

We may now prove Theorem 3.14.

Proof of Theorem 3.14. Fix d and let G be the Gaussian process promised by Theorem 3.2, for

pd. By the triangle inequality,

WF2
2(Pkσ,G) ≤ 2WF2

2(Pkσ,Pkpd)+2WF2
2(Pkpd,G) ≤ 2WF2

∞(Pkσ,Pkpd)+2WF2
2(Pkpd,G).

We now invoke Lemma 3.1 with (3.8) to obtain,

WF2
2(Pkσ,Pkpd) ≤ ‖pd − σ‖2

L2(γ) ≤ Rσ(d).

For the other term, Theorem 3.2 along with Lemma 3.15 imply,

WF2
∞(Pkpd,G) ≤ max

i
|σ̂i|2 · dCd

n2d

k
1
3

,

for some numerical constant C > 0. So,

WF2
2(Pkσ,G) ≤ 2 max

i
|σ̂i|2dCd

n2d

k
1
3

+ 2Rσ(d).

Finally, choose d = d log(k)
100C log(n) log(log(k))

e. It can be verified that for any δ > 0, α > 0,

dCd · n2d ≤ log(k)
log(k)

100 log(log(k)) · e log(k)
10 = O(k

1
6 ).
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This implies the existence of an absolute constant C ′ > 0, for which,

WF2
2(Pkσ,G) ≤ C ′

(
max
i
|σ̂i|2

k
1
6

+Rσ(d)

)
.

The proof is complete.

3.5.1 ReLU activation

In this section we specialize Theorem 3.14 to the ReLU activation ψ(x) := max(0, x). The

calculation of ψ̂m may be found in [91, 126]. We repeat it here for completeness.

Lemma 3.16. Let m ∈ N. Then,

|ψ̂m| =


1√
2

m = 1

0 m > 1 and odd
(m−3)!!√
π
√
m!

otherwise

. (3.9)

In particular, |ψ̂m| ≤ 1

m
3
2
, and

Rψ(d) ≤ 1

d2
.

Proof. Note that once (3.9) is established the rest of the proof is trivial. Thus, let us focus on

calculating ψ̂m. We will use the following formula for the derivative of Hermite polynomials,

h′m(x) =
√
mhm−1(x). (3.10)

Using this, we have, with an application of integration by parts,

ψ̂m =

∫
R

hm(x)ψ(x)dγ(x) =

∫
x>0

hm(x)xdγ(x) =
hm(0)√

2π
−
∫
x>0

h′m(x)dγ(x)

=
hm(0)√

2π
−√m

∫
x>0

hm−1(x)dγ(x)

=
hm(0)√

2π
+ (−1)m

√
m

2π(m− 1)!

∫
x>0

dm−1

dxm−1
e−

x2

2 (x)dx

=
hm(0)√

2π
+ (−1)m

√
m

2π(m− 1)!

dm−2

dxm−2
e−

x2

2 (0)

=
hm(0) +

√
m

(m−1)
hm−2(0)

√
2π

.
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For hm(0), the following explicit formula holds:

hm(0) =

0 for m odd

(−1)m/2 (m−1)!!√
m!

for m even
.

In this case, for m even,√
m

(m− 1)
hm−2(0) = (−1)m/2−1

√
m

m− 1

(m− 3)!!√
(m− 2)!

= (−1)m/2−1m(m− 3)!!√
(m− 1)!

,

and (3.9) follows.

Theorem 3.3 follows immediately, by plugging the above Lemma into Theorem 3.14.

Proof of Theorem 3.3. From Lemma 3.16 we see that max
i
|ψ̂i| ≤ 1, and so coupled with The-

orem 3.14, we get

W2
2 (Pkσ,G) ≤ C

(
1

k
1
6

+

(
log(n) log(log(k))

log(k)

)2
)
.

It is now enough to observe,

1

k
1
6

= O

((
log(n) log(log(k))

log(k)

)2
)
.

3.5.2 Hyperbolic tangent activation

Let us now consider the function tanh(x) := ex−e−x
ex+e−x

as an activation. Since it is smooth, we

should expect it to have better polynomial approximations than the ReLU. This will lead to a

faster convergence rate along the CLT. An explicit expression for t̂anhm may be difficult to find.

However, one may combine the smoothness of tanh with a classical result of Hille ( [135]) in

order to bound the coefficients from above.

This calculation was done in [202], where it was shown that for the derivative |t̂anh′m| ≤
e−C

√
m, where C > 0, does not depend on m. We now extend this result to tanh.

Lemma 3.17. Let m ≥ 0. It holds that

|t̂anhm| ≤ e−C
√
m,

for some absolute constant C > 0.
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Proof. Since |t̂anh′m| ≤ e−C
√
m, Hille’s result ( [135, Theorem 1]) shows that we have the

point-wise equality,

tanh′(x) =
∞∑
m=0

t̂anh′mhm(x).

We now use (3.10), and integrate the series, term by term, so that

tanh(x) =
∞∑
m=1

t̂anh′m−1√
m

hm(x).

So, t̂anhm = t̂anh′m−1√
m

, which proves the claim.

From the lemma, we get that there is some absolute constant C > 0, such that Rtanh(d) ≤
e−C

√
d. This allows us to prove Theorem 3.4.

Proof of Theorem 3.4. From Lemma 3.17 along with Theorem 3.14, we get

W2
2 (Pkσ,G) ≤ C

(
1

k
1
6

+ exp

(
− 1

C

√
log(k)

log(n) log(log(k))

))
.

As before, the claim follows since,

1

k
1
6

= O

(
exp

(
− 1

C

√
log(k)

log(n) log(log(k))

))
.
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“All are equal, but some are more equal than others.”

- Paraphrasing pig Napoleon

PART II

STABILITY OF FUNCTIONAL
INEQUALITIES
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4
Stability of the Shannon-Stam Inequality

4.1 Introduction

Let µ be a probability measure on Rd and X ∼ µ. Denote by h(µ), the differential entropy of µ

which is defined to be

h(µ) := h(X) = −
∫
Rd

ln

(
dµ

dx

)
dµ.

One of the fundamental results of information theory is the celebrated Shannon-Stam inequality

which asserts that for independent vectors X , Y and λ ∈ (0, 1)

h
(√

λX +
√

1− λY
)
≥ λh(X) + (1− λ)h(Y ). (4.1)

We remark that Stam [223] actually proved the equivalent statement

e
2h(X+Y )

d ≥ e
2h(X)
d + e

2h(Y )
d , (4.2)

first observed by Shannon in [219], and known today as the entropy power inequality. To state

yet another equivalent form of the inequality, for any positive-definite matrix, Σ, we set γΣ as
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the centered Gaussian measure on Rd with density

dγΣ(x)

dx
=

e−
〈x,Σ−1x〉

2√
det(2πΣ)

.

For the case where the covariance matrix is the identity, Id, we will also write γ := γId . If

Y ∼ ν we set the relative entropy of X with respect to Y as

Ent(µ||ν) := Ent(X||Y ) =

∫
Rd

ln

(
dµ

dν

)
dµ.

For G ∼ γ, the differential entropy is related to the relative entropy by

Ent(X||G) = −h(X)− 1

2
E
[
‖X‖2

2

]
+
d

2
ln(2π).

Thus, when X and Y are independent and centered the statement

Ent
(√

λX +
√

1− λY
∣∣∣∣G) ≤ λEnt(X||G) + (1− λ)Ent(Y ||G), (4.3)

is equivalent to (4.1). Shannon noted that in the case that X and Y are Gaussians with propor-

tional covariance matrices, both sides of (4.2) are equal. Later, in [223] it was shown that this

is actually a necessary condition for the equality case. We define the deficit in (4.3) as

δEPI,λ(µ, ν) := δEPI,λ(X, Y ) =
(
λEnt(X||G)+(1−λ)Ent(Y ||G)

)
−Ent

(√
λX +

√
1− λY

∣∣∣∣G) ,
and are led to the question: what can be said about X and Y when δEPI,λ(X, Y ) is small?

One might expect that, in light of the equality cases, a small deficit in (4.3) should imply that

X and Y are both close, in some sense, to a Gaussian. A recent line of works has focused on

an attempt to make this intuition precise (see e.g., [84, 231]), which is also our main goal in

the present work. In particular, we give the first stability estimate in terms of relative entropy.

A good starting point is the work of Courtade, Fathi and Pananjady ( [84]) which considers

stability in terms of the Wasserstein distance (also known as quadratic transportation). A crucial

observation made in their work is that without further assumptions on the measures µ and ν,

one should not expect meaningful stability results to hold. Indeed, for any λ ∈ (0, 1) they

show that there exists a family of measures {µε}ε>0 such that δEPI,λ(µε, µε) < ε and such that

for any Gaussian measure γΣ, W2(µε, γΣ) ≥ 1
3
. Moreover, one may take µε to be a mixture

of Gaussians. Thus, in order to derive quantitative bounds it is necessary to consider a more

restricted class of measures. We focus on the class of log-concave measures which, as our

method demonstrates, turns out to be natural in this context.
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Main Contributions

Our first result applies to uniformly log-concave vectors. Recall that, if there exists ξ > 0 such

that

−∇2 ln(f(x)) � ξId for all x,

then we say that the measure is ξ-uniformly log-concave.

Theorem 4.1. LetX and Y be 1-uniformly log-concave centered vectors, and denote by σ2
X , σ

2
Y

the respective minimal eigenvalues of their covariance matrices. Then there exist Gaussian
vectors GX and GY such that for any λ ∈ (0, 1),

δEPI,λ(X,Y ) ≥ λ(1− λ)

2

(
σ4
XEnt (X||GX) + σ4

Y Ent (Y ||GY ) +
σ4
X

2
Ent (GX ||GY ) +

σ4
Y

2
Ent (GY ||GX)

)
.

To compare this with the main result of [84] we recall the transportation-entropy inequality

due to Talagrand ( [229]) which states that

W2
2 (X,G) ≤ 2Ent(X||G).

As a conclusion we get

δEPI,λ(X, Y ) ≥ CσX ,σY
λ(1− λ)

2

(
W2

2 (X,GX) +W2
2 (Y,GY ) +W2

2 (GX , GY )
)
,

where CσX ,σY depends only on σX and σY . Up to this constant, this is precisely the main result

of [84]. In fact, our method can reproduce their exact result, which we present as a warm up in

the next section. We remark that as the underlying inequality is of information-theoretic nature,

it is natural to expect that stability estimates are expressed in terms of relative entropy.

A random vector is isotropic if it is centered and its covariance matrix is the identity. By a re-

scaling argument the above theorem can be restated for uniform log-concave isotropic random

vectors.

Corollary 4.2. Let X and Y be ξ-uniformly log-concave and isotropic random vectors, then

there exist Gaussian vectors GX and GY such that for any λ ∈ (0, 1)

δEPI,λ(X, Y ) ≥ λ(1− λ)

2
ξ2

(
Ent (X||GX) + Ent (Y ||GY ) +

1

2
Ent (GX ||GY ) +

1

2
Ent (GY ||GX)

)
.

In our estimate for general log-concave vectors, the dependence on the parameter ξ will be

replaced by the spectral gap of the measures. We say that a random vectorX satisfies a Poincaré

inequality if there exists a constant C > 0 such that

E [Var(ψ(X))] ≤ CE
[
‖∇ψ(X)‖2

2

]
, for all test functions ψ.
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We define Cp(X) to be the smallest number such that the above equation holds with C =

Cp(X), and refer to this quantity as the Poincaré constant of X . The inverse quantity, Cp(X)−1

is referred to as the spectral gap of X .

Theorem 4.3. Let X and Y be centered log-concave vectors with σ2
X , σ2

Y denoting the mini-

mal eigenvalues of their covariance matrices. Assume that Cov(X) + Cov(Y ) = 2Id and set

max
(

Cp(X)

σ2
X
, Cp(Y )

σ2
Y

)
= Cp. Then, if G denotes the standard Gaussian, for every λ ∈ (0, 1)

δEPI,λ(X, Y ) ≥ Kλ(1− λ)

(
min(σ2

Y , σ
2
X)

Cp

)3

(Ent (X||G) + Ent (Y ||G)) ,

where K > 0 is a numerical constant, which can be made explicit.

Remark 4.4. For ξ-uniformly log-concave vectors, we have the relation, Cp(X) ≤ 1
ξ

(this is a

consequence of the Brascamp-Lieb inequality [50], for instance). Thus, considering Corollary

4.2, one might have expected that the term C3
p could have been replaced by C2

p in Theorem 4.3.

We do not know if either result is tight.

Remark 4.5. Bounding the Poincaré constant of an isotropic log-concave measure is the ob-

ject of the long standing Kannan-Lováz-Simonovits (KLS) conjecture (see [147, 160] for more

information). The conjecture asserts that there exists a constant K > 0, independent of the

dimension, such that for any isotropic log-concave vector X , Cp(X) ≤ K. The best known

bound is due to Chen which showed in [72] that if X is a a d-dimensional log-concave vector,

Cp(X) = O
(
dod(1)

)
.

Concerning the assumptions of Theorem 4.3; note that as the EPI is invariant to linear trans-

formation, there is no loss in generality in assuming Cov(X) + Cov(Y ) = 2Id. Remark that

Cp(X) is, approximately, proportional to the maximal eigenvalue of Cov(X). Thus, for ill-

conditioned covariance matrices Cp(X)

σ2
X
, Cp(Y )

σ2
Y

will not be on the same scale. It seems plausible

to conjecture that the dependence on the minimal eigenvalue and Poicnaré constant could be

replaced by a quantity which would take into consideration all eigenvalues.

Some other known stability results, both for log-concave vectors and for other classes of mea-

sures, may be found in [83, 84, 231]. The reader is referred to [84, Section 2.2] for a complete

discussion. Let us mention one important special case, which is relevant to our results; the so-

called entropy jump, first proved for the one dimensional case by Ball, Barthe and Naor ( [20])

and then generalized by Ball and Nguyen to arbitrary dimensions in [21]. According to the

latter result, if X is a log-concave and isotropic random vector, then

δEPI, 1
2
(X,X) ≥ 1

8Cp(X)
Ent(X||G),

where Cp(X) is the Poincaré constant of X and G is the standard Gaussian. This should be

compared to both Corollary 4.2 and Theorem 4.3. That is, in the special case of two identical
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measures and λ = 1
2
, their result gives a better dependence on the Poincaré constant than the

one afforded by our results.

Ball and Nguyen ( [21]) also give an interesting motivation for these type of inequalities:

They show that if for some constant κ > 0,

δEPI, 1
2
(X,X) ≥ κEnt(X||G),

then the density fX of X satisfies, fX(0) ≤ e
2d
κ . The isotropic constant of X is defined by

LX := fX(0)
1
d , and is the main subject of the slicing conjecture, which hypothesizes that LX is

uniformly bounded by a constant, independent of the dimension, for every isotropic log-concave

vector X . Ball and Nguyen observed that using the above fact in conjunction with an entropy

jump estimate gives a bound on the isotropic constant in terms of the Poincaré constant, and in

particular the slicing conjecture is implied by the KLS conjecture.

Using ideas originating from additive combinatorics, the setting of the entropy jump is fur-

ther investigated in [156, 172].

Our final results give improved bounds under the assumption thatX and Y are already close

to being Gaussian, in terms of relative entropy, or if one them is a Gaussian. We record these

results in the following theorems.

Theorem 4.6. Suppose that X, Y be isotropic log-concave vectors such that Cp(X),Cp(Y ) ≤
Cp for some Cp <∞. Suppose further that Ent(X||G),Ent(Y ||G) ≤ 1

4
, then

δEPI,λ(X, Y ) ≥ λ(1− λ)

36Cp

(Ent(X||G) + Ent(Y ||G))

The following gives an improved bound in the case that one of the random vectors is a

Gaussian, and holds in full generality with respect to the other vector, without a log-concavity

assumption.

Theorem 4.7. Let X be a centered random vector with finite Poincaré constant, Cp(X) < ∞.

Then

δEPI,λ(X,G) ≥
(
λ− λ (Cp(X)− 1)− ln (λ (Cp(X)− 1) + 1)

Cp(X)− ln (Cp(X))− 1

)
Ent(X||G).

Remark 4.8. When Cp(X) ≥ 1, the following inequality holds(
λ− λ (Cp(X)− 1)− ln (λ (Cp(X)− 1) + 1)

Cp(X)− ln (Cp(X))− 1

)
≥ λ(1− λ)

Cp(X)
.

Remark 4.9. Theorem 4.7 was already proved in [84] by using a slightly different approach.

Denote by I(X||G), the relative Fisher information of the random vectorX . In [113] the authors
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proof the following improved log-Sobolev inequality.

I(X||G) ≥ 2Ent(X||G)
(1− Cp(X))2

Cp(X)(Cp(X)− ln (Cp(X)− 1))
.

The theorem follows by integrating the inequality along the Ornstein-Uhlenbeck semi-group.

4.2 Bounding the deficit via martingale embeddings

Our approach is based on ideas somewhat related to the ones which appear in Chapter 1: the

very high-level plan of the proof is to embed the variables X, Y as the terminal points of some

martingales and express the entropies ofX, Y andX+Y as functions of the associates quadratic

co-variation processes. One of the main benefits in using such an embedding is that the co-

variation process of X + Y can be easily expressed in terms on the ones of X, Y , as demon-

strated below. In Chapter 1 these ideas where used to produce upper bounds for the entropic

central limit theorem, so it stands to reason that related methods may be useful here. It turns

out, however, that in order to produce meaningful bounds for the Shannon-Stam inequality, one

needs a more intricate analysis, since this inequality corresponds to a second-derivative phe-

nomenon: whereas for the CLT one only needs to produce upper bounds on the relative entropy,

here we need to be able to compare, in a non-asymptotic way, two relative entropies.

In particular, our martingale embedding is constructed through the Föllmer process, defined

by (7) in the introduction. This construction has several useful features, one of which is that it

allows us to express the relative entropy of a measure in Rd in terms of a variational problem on

the Wiener space. In addition, upon attaining a slightly different point of view on this process,

that we introduce here, the behavior of this variational expression turns out to be tractable with

respect to convolutions.

In order to outline the argument, fix centered measures µ and ν on Rd with finite second

moment. Let X ∼ µ, Y ∼ ν be random vectors and G ∼ γ a standard Gaussian random vector.

An entropy-minimizing drift. Let Bt be a standard Brownian motion on Rd and denote

by Ft its natural filtration. In the sequel, we denote vXt , to be the Föllmer drift associated to X

(and the same for Y ) and,

Xt := Bt +

t∫
0

vXs ds.

Let us recall some of the properties which were proven in the introduction to this thesis.

It turns out that the process vXt is a martingale (which goes together with the fact that it
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minimizes a quadratic form) which is given by the equation

vXt = ∇x ln (P1−t(fX(Xt))) , (4.4)

where fX is the density of X with respect to the standard Gaussian and P1−t denotes the heat

semi-group. Moreover, from Girsanov’s formula,

Ent(X||G) =
1

2

1∫
0

E
[∥∥vXt ∥∥2

2

]
dt. (4.5)

Another important fact concerns the marginal Xt, which follows a rather simple law,

Xt
d
= tX1 +

√
t(1− t)G. (4.6)

Lehec’s proof of the Shannon-Stam inequality. For the sake of intuition, we now repeat

Lehec’s argument to reproduce the Shannon-Stam inequality (4.3) using this process. LetXt :=

BX
t +

t∫
0

vXs ds and Yt := BY
t +

t∫
0

vYs ds be the Föllmer processes associated to X and Y , where

BX
t and BY

t are independent Brownian motions. For λ ∈ (0, 1), define the new processes

wt =
√
λvXt +

√
1− λvYt ,

and

B̃t =
√
λBX

t +
√

1− λBY
t .

By the independence of BX
t and BY

t , B̃t is a Brownian motion and

B̃1 +

1∫
0

wtdt =
√
λX1 +

√
1− λY1.

Note that as the vXt is martingale, we have for every t ∈ [0, 1],

E
[
vXt
]

= E [X1] = 0.

From the bound on relative entropy in (1.21) coupled with (4.5) and the independence of the
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processes, we have,

Ent(
√
λX1 +

√
1− λY1||G) ≤ 1

2

1∫
0

E
[
‖wt‖2

2

]
dt

=
λ

2

∫
E
[∥∥vXt ∥∥2

2

]
dt+

1− λ
2

∫
E
[∥∥vYt ∥∥2

2

]
dt

= λEnt(X1||G) + (1− λ)Ent(Y1||G).

This recovers the Shannon-Stam inequality in the form (4.3).

An alternative point of view: Replacing the drift by a varying diffusion coefficient. Lehec’s

proof gives rise to the following idea: Suppose the processes vXt and vYt could be coupled in a

way such that the variance of the resulting process
√
λvXt +

√
1− λvYt was smaller than that of

wt above. Such a coupling would improve on (4.3) and that is the starting point of this work.

As it turns out, however, it is easier to get tractable bounds by working with a slightly

different interpretation of the above processes, in which the role of the drift is taken by an

adapted diffusion coefficient of a related process.

The idea is as follows: Suppose that Mt :=
t∫

0

FsdBs is a martingale, where Ft is some

positive-definite matrix valued process adapted to Ft. Consider the drift defined by

ut :=

t∫
0

Fs − Id
1− s dBs. (4.7)

We then claim that B1 +
1∫
0

utdt = M1. To show this, we use the stochastic Fubini Theorem

( [238]) to write

1∫
0

FtdBt =

1∫
0

IddBt +

1∫
0

(Ft − Id) dBt = B1 +

1∫
0

1∫
t

Ft − Id
1− t dsdBt = B1 +

1∫
0

utdt.

Since we now expressed the random variable M1 as the terminal point of a standard Brow-

nian motion with an adapted drift, the minimality property of the Föllmer drift together with

equation (4.5) immediately produce a bound on its entropy. Namely, by using Itô’s isometry

and Fubini’s theorem we have the bound

Ent(M1||G)
(4.5)
≤ 1

2

1∫
0

E
[
‖ut‖2

2

]
=

1

2
Tr

1∫
0

t∫
0

E
[
(Fs − Id)

2]
(1− s)2

dsdt =
1

2
Tr

1∫
0

E
[
(Ft − Id)

2]
1− t dt.

(4.8)

This hints at the following possible scheme of proof: in order to give an upper bound for the
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expression Ent(
√
λX1 +

√
1− λY1||G), it suffices to find martingales MX

t and MY
t such that

MX
1 ,M

Y
1 have the laws of X and Y , respectively, and such that the λ-average of the covariance

processes is close to the identity.

The Föllmer process gives rise to a natural martingale: Consider E [X1|Ft], the associated

Doob martingale. By the martingale representation theorem ( [199, Theorem 4.3.3]) there exists

a uniquely defined adapted matrix valued process ΓXt , for which

E [X1|Ft] =

t∫
0

ΓXs dB
X
s . (4.9)

We will require the following identity, which appeared in (10),

vXt =

t∫
0

ΓXs − Id
1− s dBX

s . (4.10)

The matrix ΓXt turns out to be positive definite almost surely, (in fact, it has an explicit simple

representation, see Proposition 4.12 below), which yields, as in (11),

Ent(X||G) =
1

2

1∫
0

Tr
(
E
[(

ΓXs − Id
)2
])

1− t dt. (4.11)

Given the processes ΓXt and ΓYt , we are now in position to express
√
λX +

√
1− λY as the

terminal point of a martingale, towards using (4.8), which would lead to a bound on δEPI,λ. We

define

Γ̃t :=

√
λ (ΓXt )

2
+ (1− λ) (ΓYt )

2
,

and a martingale B̃t which satisfies

B̃0 = 0 and dB̃t = Γ̃−1
t

(√
λΓXt dB

X
t +
√

1− λΓYt dB
Y
t

)
.

Since ΓXt and ΓYt are invertible almost surely and independent, it holds that

[B̃]t = tId,

where [B̃]t denotes the quadratic co-variation of B̃t. Thus, by Levy’s characterization, B̃t is a

standard Brownian motion and we have the following equality in law

1∫
0

Γ̃tdB̃t =
√
λ

1∫
0

ΓXt dB
X
t +
√

1− λ
1∫

0

ΓYt dB
Y
t

d
=
√
λX1 +

√
1− λY1.
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We can now invoke (4.8) to get

Ent
(√

λX1 +
√

1− λY1

∣∣∣∣G) ≤ 1

2

1∫
0

Tr

(
E
[(

Γ̃t − Id

)2
])

1− t dt.

Combining this with the identity (4.11) finally gives a bound on the deficit in the Shannon-Stam

inequality, in the form

δEPI,λ(X, Y ) ≥ 1

2

1∫
0

Tr

(
λE
[(

ΓXt − Id
)2
]

+ (1− λ)E
[(

ΓYt − Id
)2
]
− E

[(
Γ̃t − Id

)2
])

1− t dt

=

1∫
0

Tr
(
E
[
Γ̃t

]
− λE

[
ΓXt
]
− (1− λ)E

[
ΓYt
])

1− t dt. (4.12)

The following technical lemma will allow us to give a lower bound for the right hand side in

terms of the variances of the processes ΓXt ,Γ
Y
t . Its proof is postponed to the end of the section.

Lemma 4.10. Let A and B be positive definite matrices and denote

(A,B)λ := λA+ (1− λ)B and (A2, B2)λ := λA2 + (1− λ)B2.

Then

Tr
(√

(A2, B2)λ − (A,B)λ

)
= λ(1− λ)Tr

(
(A−B)2

(√
(A2, B2)λ + (A,B)λ

)−1
)
.

Combining the lemma with the estimate obtained in (4.12) produces the following result,

which will be our main tool in studying δEPI,λ.

Lemma 4.11. Let X and Y be centered random vectors on Rd with finite second moment, and

let ΓXt ,Γ
Y
t be defined as above. Then,

δEPI,λ(X, Y ) ≥

λ(1− λ)

1∫
0

Tr

(
E

[(
ΓXt − ΓYt

)2
(√

λ (ΓXt )
2

+ (1− λ) (ΓYt )
2

+ λΓXt + (1− λ)ΓYt

)−1
])

1− t dt.

(4.13)

The expression on the right-hand side of (4.13) may seem unwieldy, however, in many cases

it can be simplified. For example, if it can be shown that, almost surely, ΓXt ,Γ
Y
t � ctId for some
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deterministic ct > 0, then we obtain the more tractable inequality

δEPI,λ(X, Y ) ≥ λ(1− λ)

2

1∫
0

Tr
(
E
[(

ΓXt − ΓYt
)2
])

(1− t)ct
dt. (4.14)

As we will show, this is the case when the random vectors are log-concave.

Proof of Lemma 4.10. We have

Tr
(√

(A2, B2)λ − (A,B)λ

)
= Tr

((√
(A2, B2)λ − (A,B)λ

)(√
(A2, B2)λ + (A,B)λ

)(√
(A2, B2)λ + (A,B)λ

)−1
)
.

As (√
(A2, B2)λ − (A,B)λ

)(√
(A2, B2)λ + (A,B)λ

)
= λ(1− λ)

(
A2 +B2 − AB −BA

)
+
√

(A2, B2)λ(A,B)λ − (A,B)λ
√

(A2, B2)λ,

we have the equality

Tr
(√

(A2, B2)λ − (A,B)λ

)
= λ(1− λ)Tr

((
A2 +B2 − (AB +BA)

) (√
(A2, B2)λ + (A,B)λ

)−1
)

+ Tr

(√
(A2, B2)λ(A,B)λ

(√
(A2, B2)λ + (A,B)λ

)−1
)

− Tr

(
(A,B)λ

√
(A2, B2)λ

(√
(A2, B2)λ + (A,B)λ

)−1
)

Finally, as the trace is invariant under any permutation of three symmetric matrices we have that

Tr

(
AB

(√
(A2, B2)λ + (A,B)λ

)−1
)

= Tr

(
BA

(√
(A2, B2)λ + (A,B)λ

)−1
)
,

and

Tr
(√

(A2, B2)λ(A,B)λ

(√
(A2, B2)λ + (A,B)λ

)−1 )
= Tr

(
(A,B)λ

√
(A2, B2)λ

(√
(A2, B2)λ + (A,B)λ

)−1
)
.

Thus,

Tr
(√

(A2, B2)λ − (A,B)λ

)
= λ(1− λ)Tr

((
(A−B)2) (√(A2, B2)λ + (A,B)λ

)−1
)
,

115



as required.

4.2.1 The Föllmer process associated to log-concave random vectors

In this section, we collect several results pertaining to the Föllmer process. Throughout the

section, we fix a random vector X in Rn and associate to it the Föllmer process Xt, defined in

the previous section, as well as the process ΓXt , defined in equation (4.9) above. The next result

lists some of its basic properties, and we refer to [100, 106] for proofs.

Proposition 4.12. For t ∈ (0, 1) define

f tX(x) := fX(x) exp

(
‖x−Xt‖2

2

2(1− t)

)
Z−1
t,X ,

where fX is the density of X with respect to the standard Gaussian and Zt,X is a normalizing

constant defined so that
∫
Rd
f tX = 1. Then

• f tX is the density of the random measure µt := X1|Ft with respect to the standard Gaus-

sian and ΓXt = Cov(µt)
1−t .

• ΓXt is almost surely a positive definite matrix, in particular, it is invertible.

• For all t ∈ (0, 1), we have

d

dt
E
[
ΓXt
]

=
E
[
ΓXt
]
− E

[(
ΓXt
)2
]

1− t . (4.15)

• The following identity holds

E
[
vXt ⊗ vXt

]
=

Id − E
[
ΓXt
]

1− t + Cov(X)− Id, (4.16)

for all t ∈ [0, 1]. In particular, if Cov(X) � Id, then E
[
ΓXt
]
� Id.

In what follows, we restrict ourselves to the case that X is log-concave. Using this as-

sumption we will establish several important properties for the matrix Γt. For simplicity, we

will write Γt := ΓXt and vt := vXt . The next result shows that the matrix Γt is bounded al-

most surely, this is essentially a generalization of Lemma 1.30 from Chapter 1 and the prove is

similar. We repeat it here for completeness.

Lemma 4.13. Suppose that X is log-concave, then for every t ∈ (0, 1)

Γt �
1

t
Id.
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Moreover, if for some ξ > 0, X is ξ-uniformly log-concave then

Γt �
1

(1− t)ξ + t
Id.

Proof. By Proposition 4.12, µt, the law of X1|Ft has a density ρt, with respect to the Lebesgue

measure, proportional to

fX(x) exp

(
‖x‖2

2

2

)
exp

(
−‖x−Xt‖2

2

2(1− t)

)
= fX(x) exp

(
‖x‖2

2 (1− t)− ‖x−Xt‖2
2

2(1− t)

)
.

Consequently, since −∇2fX � 0,

−∇2 ln (ρt) = −∇2fX −
(

1− 1

1− t

)
Id �

t

1− tId.

It follows that, almost surely, µt is t
1−t -uniformly log-concave. According to the Brascamp-

Lieb inequality ( [50]) α-uniform log-concavity implies a spectral gap of α, and in particular

Cov(µt) � 1−t
t

Id and so, Γt = Cov(µt)
1−t � 1

t
Id. If, in addition, X is ξ-uniformly log-concave, so

that −∇2fX � ξId, then we may write

−∇2 ln(ρt) �
(
ξ +

t

1− t

)
Id =

(1− t)ξ + t

(1− t) Id

and the arguments given above show Cov(µt) � (1−t)
(1−t)ξ+tId. Thus,

Γt �
1

(1− t)ξ + t
Id.

Our next goal is to use the formulas given in the above lemma in order to bound from below

the expectation of Γt. We begin with a simple corollary.

Corollary 4.14. Suppose that X is 1-uniformly log-concave, then for every t ∈ [0, 1]

E [Γt] � Cov(X).

Proof. By (4.15), we have
d

dt
E [Γt] =

E [Γt]− E [Γ2
t ]

1− t .

By Lemma 4.13, Γt � Id, which shows

d

dt
E [Γt] � 0.
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Thus, for every t,

E [Γt] � E [Γ0] = Cov(X|F0) = Cov(X).

To produce similar bounds for general log-concave random vectors, we require more intri-

cate arguments. Recall that Cp(X) denotes the Poincaré constant of X .

Lemma 4.15. If X is centered and has a finite a Poincaré constant Cp(X) <∞, then

E
[
v⊗2
t

]
�
(
t2Cp(X) + t(1− t)

) d
dt
E
[
v⊗2
t

]
.

Proof. Recall that, by equation (4.6), we know that Xt has the same law as tX1 +
√
t(1− t)G,

where G is a standard Gaussian independent of X1. Since Cp(tX) = t2Cp(X) and since the

Poincaré constant is sub-additive with respect to convolution ( [82]) we get

Cp(Xt) ≤ t2Cp(X) + t(1− t).

The drift, vt, is a function of Xt and E [vt] = 0. Equation (4.4) implies that ∇xvt(Xt) is a

symmetric matrix, hence the Poincaré inequality yields

E
[
v⊗2
t

]
�
(
t2Cp(X) + t(1− t)

)
E
[
∇xvt(Xt)

2
]
.

As vt(Xt) is a martingale, by Itô’s lemma we have

dvt(Xt) = ∇xvt(Xt)dBt.

An application of Itô’s isometry then shows

E
[
∇xvt(Xt)

2
]

=
d

dt
E
[
vt(Xt)

⊗2
]
,

where we have again used the fact that∇xvt(Xt) is symmetric.

Using the last lemma, we can deduce lower bounds on the matrix ΓXt in terms of the Poincaré

constant.

Corollary 4.16. Suppose that X is log-concave and that σ2 is the minimal eigenvalue of

Cov(X). Then,

• For every t ∈
[
0, 1

2
Cp(X)

σ2 +1

]
, E [Γt] � min(1,σ2)

3
Id.

• For every t ∈
[

1

2
Cp(X)

σ2 +1
, 1

]
, E [Γt] � min(1,σ2)

3
1

t
(

2
Cp(X)

σ2 +1
)Id.
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Proof. Using Equation (4.10), Itô’s isometry and the fact that Γt is symmetric, we deduce that

d

dt
E
[
v⊗2
t

]
= E

[(
Γt − Id
1− t

)2
]
,

Combining this with equation (4.16) and using Lemma 4.15, we get

Cov(X)− Id +
Id − E [Γt]

1− t �
(
t2Cp(X) + t(1− t)

) E [Γ2
t ]− 2E [Γt] + Id

(1− t)2
. (4.17)

In the case whereX is log-concave, by Lemma 4.13, Γt � 1
t
Id almost surely, therefore E [Γ2

t ] �
1
t
E [Γt]. The above inequality then becomes

(1− t)2
(
σ2 − 1

)
Id + (1− t)(Id − E [Γt])

� (tCp(X) + (1− t))E [Γt] +
(
t2Cp(X) + t(1− t)

)
(Id − 2E [Γt]) .

Rearranging the inequality shows

σ2 − 2tσ2 − Cp(X)t2 + t2σ2

2− 4t− 2Cp(X)t2 + Cp(X)t+ 2t2
Id � E [Γt] .

As long as t ≤ 1

2
(

Cp(X)

σ2

)
+1

, we have

if σ2 ≥ 1,
1

3
Id �

σ2 (4Cp(X)− σ2)

2Cp(X)(σ2 + 4)− σ4
Id � E [Γt] ,

if σ2 < 1,
σ2

3
Id �

σ2 (4Cp(X)− σ2)

2Cp(X)(σ2 + 4)− σ4
Id � E [Γt] ,

which gives the first bound. By (4.9), we also have the bound

d

dt
E [Γt] =

E [Γt]− E [Γ2
t ]

1− t � 1− 1
t

1− t E [Γt] = −1

t
E [Γt] .

The differential equation

g′(t) = −g(t)

t
, g

(
1

2Cp(X)

σ2 + 1

)
=

min(1, σ2)

3

has a unique solution given by

g(t) =
min(1, σ2)

3

1

t
(

2Cp(X)

σ2 + 1
) .
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Using Gromwall’s inequality, we conclude that for every t ∈
[

1

2
Cp(X)

σ2 +1
, 1

]
,

E [Γt] �
min(1, σ2)

3

1

t
(

2Cp(X)

σ2 + 1
)Id.

We conclude this section with a comparison lemma that will allow to control the values of

E
[
‖vt‖2

2

]
.

Lemma 4.17. Let t0 ∈ [0, 1] and suppose that X is centered with a finite Poincaré constant

Cp(X) <∞. Then

• For t0 ≤ t ≤ 1,

E
[
‖vt‖2

2

]
≥ E

[
‖vt0‖2

2

] t0 (Cp(X)− 1) t+ t

t0 (Cp(X)− 1) t+ t0
.

• For 0 ≤ t ≤ t0,

E
[
‖vt‖2

2

]
≤ E

[
‖vt0‖2

2

] t0 (Cp(X)− 1) t+ t

t0 (Cp(X)− 1) t+ t0
.

Proof. Consider the differential equation

g(t) =
(
Cp(X)t2 + t(1− t)

)
g′(t) with initial condition g(t0) = E

[
‖vt0‖2

2

]
.

It has a unique solution given by

g(t) = E
[
‖vt0‖2

2

] t0 (Cp(X)− 1) t+ t

t0 (Cp(X)− 1) t+ t0
.

The bounds follow by applying Gromwall’s inequality combined with the result of Lemma 4.15.

4.3 Stability for uniformly log-concave random vectors

In this section, we assume that X and Y are both 1-uniformly log-concave. Let BX
t , B

Y
t be

independent standard Brownian motions and consider the associated processes ΓXt ,Γ
Y
t defined

as in Section 4.2.

The key fact that makes the uniform log-concave case easier is Lemma 4.13, which implies
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that ΓXt ,Γ
Y
t � Id almost surely. In this case, Lemma 4.11 simplifies to

δEPI,λ(X, Y ) ≥ λ(1− λ)

2

1∫
0

Tr
(
Var(ΓXt )

)
1− t +

Tr
(
Var(ΓYt )

)
1− t +

Tr
((
E
[
ΓXt
]
− E

[
ΓYt
])2
)

1− t

 dt,

(4.18)

where we have used the fact that

Tr
(
E
[(

ΓXt − ΓYt
)2
])

= Tr
(
E
[(

ΓXt − E
[
ΓXt
])2
]

+ E
[(

ΓYt − E
[
ΓYt
])2
]

+
(
E
[
ΓXt
]
− E

[
ΓYt
])2
)
.

Consider the two Gaussian random vectors defined as

GX =

1∫
0

E
[
ΓXt
]
dBX

t and GY =

1∫
0

E
[
ΓYt
]
dBY

t ,

and observe that

X =

1∫
0

ΓXt dB
X
t =

1∫
0

(
ΓXt − E

[
ΓXt
])
dBX

t +

1∫
0

E
[
ΓXt
]
dBX

t =

1∫
0

(
ΓXt − E

[
ΓXt
])
dBX

t +GX .

This induces a coupling between X and GX from which we obtain, using Itô’s Isometry,

W2
2 (X,GX) ≤ E


 1∫

0

(
ΓXt − E

[
ΓXt
])
dBX

t

2
 =

1∫
0

Tr
(
Var

(
ΓXt
))
dt,

and an analogous estimate also holds for Y . We may now use E
[
ΓXt
]

and E
[
ΓYt
]

as the diffu-

sion coefficients for the same Brownian motion to establish

W2
2 (GX , GY ) ≤ E


 1∫

0

(
E
[
ΓXt
]
− E

[
ΓYt
])
dBt

2
 =

1∫
0

Tr
((
E
[
ΓXt
]
− E

[
ΓYt
])2
)
dt.

Plugging these estimates into (4.18) reproves the following bound, which is identical to Theo-

rem 1 in [84].

Theorem 4.18. Let X and Y be 1-uniformly log-concave centered vectors and let GX , GY be

defined as above. Then,

δEPI,λ(X, Y ) ≥ λ(1− λ)

2

(
W2

2 (X||GX) +W2
2 (Y ||GY ) +W2

2 (GX , GY )
)
.

To obtain a bound for the relative entropy towards the proof of Theorem 4.1, we will re-

quire a slightly more general version of inequality (4.8). This is the content of the next lemma,
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whose proof is similar to the argument presented above. The main difference comes from ap-

plying Girsanov’s theorem to a re-scaled Brownian motion, from which we obtain an expression

analogous to (4.5). This is essentially Lemma 1.13, which we restate here for convenience

Lemma 4.19. Let Ft and Et be two Ft-adapted matrix-valued processes and let Xt, Mt be two

processes defined by

Zt =

t∫
0

FsdBs, and Mt =

t∫
0

EsdBs.

Suppose that for every t ∈ [0, 1], Et � cId for some deterministic c > 0, then

Ent(Z1||M1) ≤ Tr

1∫
0

E
[
(Ft − Et)2]
c2(1− t) dt.

Proof of Theorem 4.1. By Corollary 4.14

E
[
ΓXt
]
� σXId and E

[
ΓYt
]
� σY Id for every t ∈ [0, 1].

We invoke Lemma 4.19 with Et = E
[
ΓXt
]

and Ft = ΓXt to obtain

σ2
XEnt(X||GX) ≤

1∫
0

Tr
(
Var

(
ΓXt
))

1− t dt.

Repeating the same argument for Y gives

σ2
Y Ent(Y ||GY ) ≤

1∫
0

Tr
(
Var

(
ΓYt
))

1− t dt.

By invoking Lemma 4.19 with Ft = E
[
ΓXt
]

and Et = E
[
ΓYt
]

and then one more time after

switching between Ft and Et, and summing the results, we get

σ2
Y

2
Ent(GX ||GY ) +

σ2
X

2
Ent(GY ||GX) ≤

1∫
0

Tr
((
E
[
ΓXt
]
− E

[
ΓYt
])2
)

1− t dt.

Plugging the above inequalities into (4.18) concludes the proof.
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4.4 Stability for general log-concave random vectors

Fix X, Y , centered log-concave random vectors in Rd, such that

Cov(Y ) + Cov(X) = 2Id, (4.19)

with σ2
X , σ

2
Y the corresponding minimal eigenvalues of Cov(X) and Cov(Y ). Assume further

that Cp(Y )

σ2
Y
, Cp(X)

σ2
X
≤ Cp, for some Cp > 1. Again, let BX

t and BY
t be independent Brownian

motions and consider the associated processes ΓXt ,Γ
Y
t defined as in Section 4.2.

The general log-concave case, in comparison with the case where X and Y are uniformly

log-concave, gives rise to two essential difficulties. Recall that the results in the previous section

used the fact that an upper bound for the matrices ΓXt ,Γ
Y
t , combined with equation (4.13) gives

the simpler bound (4.18). Unfortunately, in the general log-concave case, there is no upper

bound uniform in t, which creates the first problem. The second issue has to do with the lack of

respective lower bounds for E[ΓXt ] and E[ΓYt ]: in view of Lemma 4.19, one needs such bounds

in order to obtain estimates on the entropies.

The solution of the second issue lies in Corollary 4.16, which gives a lower bound for the

processes in terms on the Poincaré constants. We denote ξ = 1
(2Cp+1)

min(σ2
Y ,σ

2
X)

3
, so that the

corollary gives

E
[
ΓYt
]
,E
[
ΓXt
]
� ξId. (4.20)

Thus, we are left with the issue arising from the lack of a uniform upper bound for the

matrices ΓXt ,Γ
Y
t . Note that Lemma 4.13 gives ΓXt � 1

t
Id, a bound which is not uniform in t. To

illustrate how one may overcome this issue, suppose that there exists an ε > 0, such that

ε∫
0

Tr
(
E
[(

ΓXt − ΓYt
)2
])

(1− t) dt <
1

2

1∫
0

Tr
(
E
[(

ΓXt − ΓYt
)2
])

(1− t) dt.

In such a case, Lemma 4.11 would imply

δEPI,λ(X, Y ) &
λ(1− λ)

ε
Tr

1∫
0

E
[(

ΓXt − ΓYt
)2
]

1− t dt.

Towards finding an ε such that the above holds, note that since vXt is a martingale, and using

(4.5) we have for every t0 ∈ [0, 1],

(1− t0)Ent (X||G) =
1− t0

2

1∫
0

E
[∥∥vXt ∥∥2

2

]
dt ≤ 1

2

1∫
t0

E
[∥∥vXt ∥∥2

2

]
dt ≤ Ent (X||G) . (4.21)
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Observe that

Tr
(
E
[(

ΓXt − ΓYt
)2
])

= Tr
(
E
[(

ΓXt − Id
)2
]

+ E
[(

ΓYt − Id
)2
]
− 2E

[
Id − ΓXt

]
E
[
Id − ΓYt

])
.

Using the relation in (4.10), Fubini’s theorem shows

1∫
t0

E
[∥∥vXt ∥∥2

2

]
dt = Tr

1∫
t0

t∫
0

E
[(

ΓXs − Id
)2
]

(1− s)2
dsdt

= Tr

t0∫
0

1∫
t0

E
[(

ΓXs − Id
)2
]

(1− s)2
dtds+ Tr

1∫
t0

1∫
s

E
[(

ΓXs − Id
)2
]

(1− s)2
dtds

= (1− t0)E
[∥∥vXt0∥∥2

2

]
+ Tr

1∫
t0

E
[(

ΓXs − Id
)2
]

1− s ds.

Combining the last two displays gives

Tr

1∫
t0

E
[(

ΓXt − ΓYt
)2
]

1− t dt =

1∫
t0

(
E
[∥∥vXt ∥∥2

2

]
+ E

[∥∥vYt ∥∥2

2

])
dt− (1− t0)

(
E
[∥∥vXt0∥∥2

2

]
+ E

[∥∥vYt0∥∥2

2

])

− 2Tr

1∫
t0

E
[
Id − ΓXt

]
E
[
Id − ΓYt

]
1− t dt. (4.22)

Using (4.16), we have the identities:

E
[
Id − ΓXt

]
1− t = E

[
vXt ⊗ vXt

]
+ Id − Cov(X)

and
E
[
Id − ΓYt

]
1− t = E

[
vYt ⊗ vYt

]
+ Id − Cov(Y ),

from which we deduce

2
E
[
Id − ΓXt

]
E
[
Id − ΓYt

]
1− t =

(
Id − E

[
ΓYt
])
E
[
vXt ⊗ vXt

]
+
(
Id − E

[
ΓXt
])
E
[
vYt ⊗ vYt

]
+
(
Id − E

[
ΓYt
])

(Id − Cov(X)) +
(
Id − E

[
ΓXt
])

(Id − Cov(Y )) .

Let {wi}di=1 be an orthornormal basis of eigenvectors corresponding to the eigenvalues {λi}di=1

of Id − E
[
ΓXt
]
. The following observation, which follows from the above identities, is cru-

cial: if λi ≤ 0 then necessarily 〈wi,Cov(X)wi〉 ≥ 1. In this case, by assumption (4.19),
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〈wi,Cov(Y )wi〉 ≤ 1 and 〈
wi,
E
[
Id − ΓXt

]
E
[
Id − ΓYt

]
1− t wi

〉
≤ 0.

Our aim is to bound (4.22) from below; thus, in the calculation of the trace in the RHS, we may

disregard all wi corresponding to negative λi. Moreover, if λi ≥ 0, we need only consider the

cases where

〈wi,
(
Id − E

[
ΓYt
])
wi〉 ≥ 0,

as well. Since,

2

〈
wi,
E
[
Id − ΓXt

]
E
[
Id − ΓYt

]
1− t wi

〉
=〈wi,E

[
Id − ΓXt

]
wi〉
(
E
[
〈vYt , wi〉2

]
+ 1− 〈wi,Cov(Y )wi〉

)
+ 〈wi,E

[
Id − ΓYt

]
wi〉
(
E
[
〈vXt , wi〉2

]
+ 1− 〈wi,Cov(X)wi〉

)
,

under the assumptions taken on wi, we see that all the terms are positive. Using the estimate

(4.20), the previous equation is bounded from above by

(1− ξ)
(
E
[
〈vYt , wi〉2

]
+ 1− 〈wi,Cov(Y )wi〉+ E

[
〈vXt , wi〉2

]
+ 1− 〈wi,Cov(X)wi〉

)
= (1− ξ)

(
E
[
〈vYt , wi〉2

]
+ E

[
〈vXt , wi〉2

] )
,

where we have used (4.19). Summing over all the relevant wi we get

2Tr
E
[
Id − ΓXt

]
E
[
Id − ΓYt

]
1− t ≤ (1− ξ)

(
E
[∥∥vXt ∥∥2

2

]
+ E

[∥∥vYt ∥∥2

2

])
.

Plugging this into (4.22) and using (4.21) we have thus shown

Tr

1∫
t0

E
[(

ΓXt − ΓYt
)2
]

1− t dt ≥ 2ξ(1− t0) (Ent(X||G) + Ent(Y ||G))

− (1− t0)
(
E
[∥∥vXt0∥∥2

2

]
+ E

[∥∥vYt0∥∥2

2

])
. (4.23)

This suggests that it may be useful to bound E
[∥∥vXt0∥∥2

2

]
from above, for small values of t0,

which is the objective of the next lemma.

Lemma 4.20. If X is centered and has a finite Poincaré constant Cp(X) < ∞, then for every

s ≤ 1
3(2Cp(X)+1)

the following holds

E
[∥∥vXs2∥∥2

2

]
<
s

4
· Ent(X||G).
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Proof. Suppose to the contrary that E
[∥∥vXs2∥∥2

2

]
≥ s

4
· Ent(X||G). Invoking Lemma 4.17 with

t0 = s2 gives

E
[∥∥vXt ∥∥2

2

]
≥ Ent(X||G) · t ((Cp(X)− 1)s2 + 1)

4 ((Cp(X)− 1)st+ s)
,

whenever t ≥ s2. Thus,

1∫
s2

E
[∥∥vXt ∥∥2

2

]
dt ≥ Ent(X||G)

1∫
s2

t ((Cp(X)− 1)s2 + 1)

4 ((Cp(X)− 1)st+ s)
dt

= Ent(X||G)
(
(Cp(X)− 1)s2 + 1

) (Cp(X)− 1)t− ln (t (Cp(X)− 1) + 1)

4(Cp(X)− 1)2s

∣∣∣∣∣
1

s2

.

(4.24)

Note now that for s ≤ 1
3(2Cp(X)+1)

d

ds

t ((Cp(X)− 1)s2 + 1)

4 ((Cp(X)− 1)st+ s)
=

(Cp(X)− 1) s2t− 1

s2((Cp(X)− 1)t+ 1)
< 0,

and in particular we may substitute s = 1
3(2Cp(X)+1)

in (4.24). In this case, a straightforward

calculation yields
1∫

ξ2
X

E
[∥∥vXt ∥∥2

2

]
dt > Ent(X||G),

which contradicts the identity (4.5), and concludes the proof by contradiction.

We would like to use the lemma with the choice s = ξ2. In order to verify the condition on

the lemma which amounts to ξ2 ≤ 1
3(2Cp(X)+1)

, we first remark that if σ2
X ≤ 1, then it is clear

that ξ ≤ 1
3(2Cp(X)+1)

. Otherwise, σ2
X ≥ 1 and

ξ ≤ 1

2Cp(X)

σ2
X

+ 1

σ2
Y

3
≤ 1

2Cp(X)

σ2
X

+ 1

2− σ2
X

3
≤ 1

3(2Cp(X) + 1)
.

As the same reasoning is also true for Y , we now choose t0 = ξ2, which allows to invoke the

previous lemma in (4.23) and to establish:

Tr

1∫
ξ2

E
[(

ΓXt − ΓYt
)2
]

1− t dt ≥ ξ (Ent(X||G) + Ent(Y ||G)) . (4.25)

We are finally ready to prove the main theorem.

Proof of Theorem 4.3. Denote ξ = 1
(2Cp+1)

min(σ2
Y ,σ

2
X)

3
. Since X and Y are log-concave, by

126



Lemma 4.13, ΓXt ,Γ
Y
t � 1

t
Id almost surely. Thus, Lemma 4.11 gives

δEPI,λ(X, Y ) ≥ ξ2λ(1− λ)

2

1∫
ξ2

Tr
(
E
[
(ΓXt − ΓYt )2

])
1− t dt.

By noting that Cp ≥ 1, the bound (4.25) gives

δEPI,λ(X, Y ) ≥ ξ3λ(1− λ)

2
(Ent (X||G) + Ent (Y ||G))

≥ Kλ(1− λ)

(
min(σ2

Y , σ
2
X)

Cp

)3

(Ent (X||G) + Ent (Y ||G)) ,

for some numerical constant K > 0.

4.5 Further results

4.5.1 Stability for low entropy log concave measures

In this section we focus on the case where X and Y are log-concave and isotropic. Similar to

the previous section, we set ξX = 1
3(2Cp(X)+1)

, so that by Corollary 4.16,

E
[
ΓXt
]
� ξXId.

Towards the proof of Theorem 4.6, we first need an analogue of Lemma 4.20, for which we

sketch the proof here.

Lemma 4.21. If X is centred and has a finite Poincaré constant Cp(X) <∞,

E
[
‖vξX‖2

2

]
<

1

4
Ent(X||G).

Proof. Assume by contradiction that E
[
‖vξX‖2

2

]
≥ 1

4
Ent(X||G). In this case, Lemma 4.17

implies, for every t ≥ ξX ,

E
[∥∥vXt ∥∥2

2

]
≥ Ent(X||G) · t ((Cp(X)− 1)ξX + 1)

4 ((Cp(X)− 1)ξXt+ ξX)
.

A calculation then shows that

1∫
ξX

E
[∥∥vXt ∥∥2

2

]
dt ≥ Ent(X||G),

which is a contradiction to (4.5).
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Proof of Theorem 4.6. Since vXt is a martingale, E
[∥∥vXt ∥∥2

2

]
is an increasing function. By (4.5)

we deduce the elementary inequality

E
[∥∥vXs ∥∥2

2

]
≤ 1

1− s

1∫
0

E
[∥∥vXt ∥∥2

2

]
dt =

2Ent(X||G)

1− s ,

which holds for every s ∈ [0, 1]. For isotropic X , Equation (4.16) shows that, for all t ∈ [0, 1],

(1− t)E
[∥∥vXt ∥∥2

2

]
= Tr

(
Id − E

[
ΓXt
])
≤ 2Ent(X||G) ≤ 1

2
,

where the second inequality is by assumption. Note that Equation (4.16) also shows that

E
[
ΓXt
]
� Id which yields, for every t ∈ [0, 1]

0 � Id − E
[
ΓXt
]
� 1

2
Id.

Applying this to Y as well produces the bound

2Tr
E
[
Id − ΓXt

]
E
[
Id − ΓYt

]
1− t ≤ 1

2
Tr

(
E
[
Id − ΓYt

]
1− t

)
+

1

2
Tr

(
E
[
Id − ΓXt

]
1− t

)
=

1

2

(
E
[∥∥vXt ∥∥2

2

]
+ E

[∥∥vYt ∥∥2

2

])
.

Set ξ = min(ξX , ξY ). Repeating the same calculation as in (4.22) and using the above gives

that

Tr

1∫
ξ

E
[(

ΓXt − ΓYt
)2
]

1− t dt ≥ (1− ξ) (Ent(X||G) + Ent(Y ||G))

− (1− ξ)
(
E
[∥∥vXξ ∥∥2

2

]
+ E

[∥∥vYξ ∥∥2

2

])
.

Lemma 4.21 implies

Tr

1∫
ξ

E
[(

ΓXt − ΓYt
)2
]

1− t dt ≥ 3

4
(1−ξ) (Ent(X||G) + Ent(Y ||G)) ≥ 1

2
(Ent(X||G) + Ent(Y ||G)) .

Finally, by Lemma 4.13, ΓXt ,Γ
Y
t � 1

t
Id almost surely for all t ∈ [0, 1]. We now invoke Lemma
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4.11 to obtain

δEPI,λ(X, Y ) ≥ λ(1− λ)

2ξ
Tr

1∫
ξ

E
[(

ΓXt − ΓYt
)2
]

1− t dt

≥ λ(1− λ)

4ξ
(Ent(X||G) + Ent(Y ||G)) .

4.5.2 Stability under convolution with a Gaussian

Proof of Theorem 4.7. Fix λ ∈ (0, 1), by (4.6) we have that

√
λ
(√

λX1 +
√

1− λG
)

d
= Bλ +

λ∫
0

vXt dt.

As the relative entropy is affine invariant, this implies

Ent
(√

λ
(√

λX1 +
√

1− λG
) ∣∣∣∣∣∣√λG) = Ent

(√
λX1 +

√
1− λG

∣∣∣∣∣∣G) =
1

2

λ∫
0

E
[∥∥vXt ∥∥2

2

]
dt.

(4.26)

Lemma 4.17 yields,

E
[∥∥vXt ∥∥2

2

]
≥ E

[∥∥vXλ ∥∥2

2

] λ (Cp(X)− 1) t+ t

λ (Cp(X)− 1) t+ λ
for t ≥ λ,

and

E
[∥∥vXt ∥∥2

2

]
≤ E

[∥∥vXλ ∥∥2

2

] λ (Cp(X)− 1) t+ t

λ (Cp(X)− 1) t+ λ
for t ≤ λ.

Denote

I1 :=

1∫
λ

λ (Cp(X)− 1) t+ t

λ (Cp(X)− 1) t+ λ
dt and I2 :=

λ∫
0

λ (Cp(X)− 1) t+ t

λ (Cp(X)− 1) t+ λ
dt.

A calculation shows

I1 =
(λ (Cp(X)− 1) + 1) ((1− λ) (Cp(X)− 1)− ln (Cp(X)) + ln (λ (Cp(X)− 1) + 1))

λ (Cp(X)− 1)2 ,

as well as

I2 =
(λ (Cp(X)− 1) + 1) (λ(Cp(X)− 1)− ln (λ (Cp(X)− 1) + 1))

λ (Cp(X)− 1)2 .
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Thus, the above bounds give

Ent(X||G) =
1

2

1∫
0

E
[∥∥vXt ∥∥2

2

]
dt ≥ 1

2

λ∫
0

E
[∥∥vXt ∥∥2

2

]
dt+

E
[∥∥vXλ ∥∥2

2

]
2

I1,

and

0 ≤ 1

2

λ∫
0

E
[∥∥vXt ∥∥2

2

]
dt ≤ 1

2
I2.

Now, since the expression α
α+β

is monotone increasing with respect to α and decreasing with

respect to β whenever α, β > 0, those two inequalities together with (4.26) imply that

Ent
(√

λX +
√

1− λG
∣∣∣∣∣∣G) ≤ I2

I1 + I2

Ent(X||G)

=
λ (Cp(X)− 1)− ln (λ (Cp(X)− 1) + 1)

Cp(X)− ln (Cp(X))− 1
Ent(X||G).

Rewriting the above in terms of the deficit in the Shannon-Stam inequality, we have established

δEPI,λ(X,G) = λEnt(X||G)− Ent
(√

λX +
√

1− λG
∣∣∣∣∣∣G)

≥
(
λ− λ (Cp(X)− 1)− ln (λ (Cp(X)− 1) + 1)

Cp(X)− ln (Cp(X))− 1

)
Ent(X||G).
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5
Stability of Talagrand’s Gaussian

Transport-Entropy Inequality

5.1 Introduction

Talagrand’s Gaussian transport-entropy inequality, first proved in [229], states that for any mea-

sure µ in Rd, with a finite second moment matrix,

W2
2 (µ, γ) ≤ 2Ent (µ||γ) . (5.1)

Recall that γ is the standard Gaussian measure on Rd, Ent (µ||γ) stands for relative entropy,

andWp (µ, γ) is the Lp-Wasserstein distance (with L2 cost function).

Since this fundamental inequality tensorizes, it holds in any dimension. Using this quality,

the inequality was shown to imply a sharp form of the dimension-free concentration of measure

phenomenon in Gaussian space. The reader is referred to [129,159,240] for further information

on the topic. By setting the measure µ to be a translation of γ, we can see that the inequality is

tight and that, in particular, the constant 2 in (5.1) cannot be improved. One, in fact, may show

that these examples account for the only equality cases of (5.1). We are thus led to consider the

question of stability of the inequality. Consider the deficit

δTal(µ) := 2Ent(µ||γ)−W2
2 (µ, γ) .
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Suppose that δTal(µ) is small. In this case, must µ be necessarily close to a translate of γ?

A first step towards answering this question, which serves as a starting point for the current

work, was given in [113] (see also [155]), where it was shown that there exists a numerical

constant c > 0, such that if µ is centered,

δTal (µ) ≥ cmin

(W2
1,1(µ, γ)

d
,
W1,1(µ, γ)√

d

)
. (5.2)

Here, W1,1 stands for the L1-Wasserstein distance with L1-cost function. The inequality was

later improved in [81], and W1,1(µ,γ)√
d

was replaced by the larger quantityW1(µ, γ). One could

hope to improve this result in several ways; First, one may consider stronger notions of distance

thanW1,1, like relative entropy. Indeed by Jensen’s inequality and (5.1),

W2
1,1(µ, γ)

d
≤ W2

2 (µ, γ) ≤ 2Ent(µ||γ). (5.3)

Second, note that for product measures, δTal(µ) grows linearly in d, while the RHS of (5.2) may

grow like
√
d (this remains true for the improved result, found in [81]). The dimension-free

nature of (5.1) suggests that the dependence on the dimension in (5.2) should, hopefully, be

removed. The goal of the present work is to identify cases in which (5.2) may be improved.

Specifically, we will be interested in giving dimension-free stability bounds with respect to the

relative entropy distance. We will also show that, without further assumptions on the measure

µ, (5.2) cannot be significantly improved.

This work adds to a recent line of works which explored dimension-free stability estimates

for functional inequalities in the Gaussian space, such as the log-Sobolev inequality [39, 101,

113,116,162], the Shannon-Stam inequality [83,103] and the Gaussian isoperimetric inequality

[23, 77, 185].

Results

In our first main result, we restrict our attention to the subclass of probability measures which

satisfy a Poincaré inequality. As in Chapter 4, a measure µ is said to satisfy a Poincaré inequality

with constant Cp(µ), if for every smooth function g : Rd → R,

∫
Rd

g2dµ−

∫
Rd

gdµ

2

≤ Cp(µ)

∫
Rd

‖∇g‖2
2 dµ,

where we implicitly assume that Cp(µ) is the smallest constant for which this inequality holds.

If µ satisfies such an inequality, then, in some sense, µ must be regular. Indeed, µ must have

finite moments of all orders. For such measures we prove:

Theorem 5.1. Let µ be a centered measure on Rd with finite Poincaré constant Cp(µ) < ∞.
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Then

δTal (µ) ≥ min

(
1

4
,
(Cp(µ) + 1) (2− 2Cp(µ) + (Cp(µ) + 1) ln (Cp(µ)))

(Cp(µ)− 1)3

)
Ent(µ||γ).

Note that as the deficit is invariant to translations, there is no loss in generality in assuming

that µ is centered. Furthermore, the Poincaré constant tensorizes, in the sense that for any two

measures ν and µ, Cp(ν ⊗ µ) = max (Cp(ν),Cp(µ)). So, if µ is a product measure Cp(µ)

does not depend on the dimension and we regard it as a dimensionless quantity. For a more

applicable form of the result we may use the inequality

min

(
1

4
,
(x+ 1)(2− 2x+ (x+ 1) ln(x))

(x− 1)3

)
≥ ln(x+ 1)

4x
,

valid for x > 0, to get

δTal (µ) ≥ ln(Cp(µ) + 1)

4Cp(µ)
Ent(µ||γ).

Theorem 5.1 should be compared with Theorem 1 in [113] and Theorem 4.7 which give simi-

lar stability estimates, involving the Poincaré constant, for the log-Sobolev and Shannon-Stam

inequalities.

Regarding the conditions of the theorem; as will be shown in Section 5.2 below, there exists

a measure µ for which δTal(µ) may be arbitrarily close to 0, whileW2 (µ, γ) remains bounded

away from 0. Thus, in order to establish meaningful stability results, in relative entropy, it is

necessary to make some assumptions on the measure µ.

In case the measure µ does not satisfy a Poincaré inequality, we provide estimates in terms

of its covariance matrix. It turns out, that if Cov(µ) is strictly smaller than the identity, at least

in some directions, we may still produce a dimension-free bound for δTal(µ).

Theorem 5.2. Let µ be a centered measure onRd and let {λi}di=1 be the eigenvalues of Cov (µ),

counted with multiplicity. Then

δTal (µ) ≥
d∑
i=1

2(1− λi) + (λi + 1) log(λi)

λi − 1
1{λi<1}.

Remark that for 0 < x < 1, the function g(x) := 2(1−x)+(x+1) log(x)
x−1

is positive and that it is

a decreasing function of x. Also, it can be verified that g′ is actually concave on this domain,

from which we may see g(x) ≥ 1
6
(x− 1)2. Thus, if Cov(µ) � Id, then the Theorem implies the

weaker result

δTal(µ) ≥ 1

6
‖Id − Cov(µ)‖2

HS ,

where ‖·‖HS , stands for the Hilbert-Schmidt norm. In line with the above discussion, we may
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regard ‖Cov(µ)− Id‖2
HS as a certain distance between µ and the standard Gaussian. Theorem 3

in [101] gives a similar estimate for the log-Sobolev inequality. Indeed, our methods are based

on related ideas.

If Cov(µ) = Id, Theorem 5.2 does not give any new insight beyond (5.1). The next result

applies, among others, to this case.

Theorem 5.3. Let µ be a centered measure on Rd, such that Tr (Cov(µ)) ≤ d. Then

δTal(µ) ≥ min

(
Ent(µ||γ)2

6d
,
Ent(µ||γ)

4

)
.

As opposed to the previous two results, Theorem 5.3 is not dimension-free and is directly

comparable to (5.2). Under the assumption Tr (Cov(µ)) ≤ d, by using (5.3) we may view

the theorem as a strengthening of (5.2). We should also comment that by Pinsker’s inequality

( [86]), relative entropy induces a stronger topology than the W1 metric. On the other hand,

(5.2) holds in greater generality than Theorem 5.3 as it makes no assumptions on the measure

µ. It is then natural to ask whether one can relax the conditions of the theorem. We give a

negative answer to this question.

Theorem 5.4. Fix d ∈ N and let ξ > d. There exist a sequence of centered measures µk on Rd

such that:

• lim
k→∞

Tr (Cov(µk)) = ξ.

• lim
k→∞

δTal (µk) = 0.

• lim inf
k→∞

W2
2 (µk, γ) ≥ ξ − d > 0.

Thus, even for one dimensional measures, in order to obtain general stability estimates in

relative entropy or even in the quadratic Wasserstein distance, the assumption Tr (Cov(µ)) ≤ d

is necessary.

The counterexample to stability, guaranteed by Theorem 5.4, may be realized as a Gaussian

mixture. In fact, as demonstrated by recent works ( [65,83,101]), Gaussian mixtures may serve

as counterexamples to stability of several other Gaussian functional inequalities. This led the

authors of [101] to note that if a measure µ saturates the log-Sobolev inequality, then it must be

close, in L2-Wasserstein distance, to some Gaussian mixture. We show that this is also true, in

relative entropy, for Talagrand’s inequality.

Theorem 5.5. Let µ be a centered measure on Rd. Then there exists another measure ν with

Cov(ν) � Cov(µ), such that if δTal(µ) ≥ d,

δTal(µ) ≥ Ent (µ||ν ∗ γ)

6
,
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and if δTal(µ) < d,

δTal(µ) ≥ 1

3
√

3

Ent(µ||ν ∗ γ)
3
2√

d
.

Note that, in light of Theorem 5.4, the above theorem is not true without the convolution,

and we cannot, in general, replace ν ∗ γ by γ.

For our last result, define the Fisher information of µ, relative to γ, as

I(µ||γ) :=

∫
Rd

∥∥∥∥∇ ln

(
dµ

dγ

)∥∥∥∥2

2

dµ.

Gross’ log-Sobolev inequality ( [130]) states that

I(µ||γ) ≥ 2Ent(µ||γ).

For this we define the deficit as

δLS(µ) = I(µ||γ)− 2Ent(µ||γ).

As will be described in Section 5.3 below, our approach draws a new connection between Tala-

grand’s and the log-Sobolev inequalities. One benefit of this approach is that all of our results

apply verbatim to the log-Sobolev inequality. Some of the results improve upon existing esti-

mates in the literature. We summarize those in the following corollary.

Corollary 5.6. Let µ be a centered measure on Rd. Then there exists a measure ν such that

Cov(ν) � Cov(µ) and

δLS(µ) ≥ min

(
1

3
√

3

Ent (µ||ν ∗ γ)
3
2

√
d

,
Ent (µ||ν ∗ γ)

6

)
.

Moreover, if Tr (Cov (µ)) ≤ d then

δLS(µ) ≥ min

(
Ent(µ||γ)2

6d
,
Ent(µ||γ)

4

)
,

The second point of the corollary is an improvement of Corollary 1.2 in [39] which shows,

under the same hypothesis,

δLS(µ) ≥ c
W4

2 (µ, γ)

d
,

for some universal constant c > 0. The improved bound can actually be deduced from Theorem

1.1 in the same paper, but it does not seem to appear in the literature explicitly

The first point of Corollary 5.6 strengthens Theorem 7 in [101] which states, that for some

measure ν:

δLS(µ) ≥ 1

15

W3
2 (µ, ν ∗ γ)√

d
. (5.4)
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Our proof closely resembles theirs, but our analysis yields bounds in the stronger relative en-

tropy distance. The authors of [101] raise the natural question, whether the dependence on the

dimension in (5.4) can be completely discarded. The same question is also relevant to δTal(µ).

We do not know the answer to either of the questions, which seem related.

Organization

The remainder of the chapter is organized as follows: In Section 5.2 we give a counter-example

to stability of Talagrand’s inequality, proving Theorem 5.4. Section 5.3 is devoted to explaining

our method and proving some of its basic properties which will then be used in Section 5.4 to

prove the stability estimates. Finally, in Section 5.5 we give an application of our results to

Gaussian concentration inequalities.

5.2 A counterexample to stability

In this section we show that one cannot expect any general stability result to hold if

Tr (Cov(µ)) > d. We present a one-dimensional example, which may be easily generalized

to higher dimensions. The following notations will be used in this section:

• For σ2 > 0, γσ2 denotes the law of the centered 1-dimensional Gaussian with variance

σ2.

• Fix ξ > 1 and k ∈ N, we set

µk :=

(
1− 1

k

)
γ1 +

1

k
γk(ξ−1).

Recall now the Kantorovich dual formulation (see [124,240], for example) of theL2-Wasserstien

distance. For ν and µ measures on R, we have

W2
2 (µ, ν) = sup

g


∫
R

g(x)dµ(x)−
∫
R

(Qg)(x)dν(x)

 , (5.5)

where the supremum runs over all measurable functions, and Qg denotes the sup-convolution

of g, namely

Qg(x) = sup
y∈R
{g(y)− (x− y)2}.

Proof of Theorem 5.4. We first note that Var(µk)
k→∞−−−→ ξ > 1. Towards understanding δTal(µk)

we use the fact that relative entropy is convex with respect to mixtures of measures ( [86]), so

Ent(µk||γ) ≤ 1

k
Ent

(
γk(ξ−1)||γ

)
=

1

2k
(k(ξ − 1)− 1− ln (k(ξ − 1))) ≤ ξ − 1

2
. (5.6)
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To control the Wasserstein distance, define the functions

gk(x) =

0 if |x| <
√
k

ln(k)(
1− 1

ln(k)

)
x2 otherwise

.

The main idea is that as k increases, Qgk vanishes in an ever expanding region, while growing

slowly outside of the region. Formally, for 0 ≤ x ≤
√
k

ln(k)
−
√
k(ln(k)−1)

ln(k)
3
2

, it holds that

gk

( √
k

ln(k)

)
−
(
x−

√
k

ln(k)

)2

=

(
1− 1

ln(k)

)( √
k

ln(k)

)2

−
(
x−

√
k

ln(k)

)2

≤ 0.

and in particular, if
√
k

ln(k)
< y,

gk(y)− (x− y)2 < 0,

which shows Qgk(x) = 0. There exists a constant c > 0 such that

√
k

ln(k)
−
√
k (ln(k)− 1)

ln(k)
3
2

≥ ck
1
4 ,

which, combined with the previous observation shows that for |x| ≤ ck
1
4 , Qgk(x) = 0. If

|x| > ck
1
4 it is standard to show Qgk(x) ≤ ln(k)x2. So,

∫
R

Qgk(x)dγ1(x) ≤ ln(k)

∫
|x|≥ck

1
4

x2dγ1(x) = ln(k)

c
√

2√
π
k

1
4 e−

c2
√
k

2 +

∫
|x|≥ck

1
4

dγ1

 k→∞−−−→ 0,

where the equality is integration by parts. Also, it is clear that∫
R

gk(x)dγ1(x)
k→∞−−−→ 0.

Now, if ϕ denotes the density of the standard Gaussian, then by a change of variables we have

1

k

∫
R

gk(x)dγk(ξ−1)(x) =

(
1− 1

ln(k)

)
1

k

∫
|x|≥

√
k

ln(k)

x2√
k (ξ − 1)

ϕ

(
x√

k (ξ − 1)

)
dx

=

(
1− 1

ln(k)

)
(ξ − 1)

∫
|y|≥ 1

ln(k)
√
ξ−1

y2ϕ(y)dy
k→∞−−−→ ξ − 1.
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Combining the above displays with (5.5) we get,

W2
2 (µk, γ1) ≥

∫
R

gk(x)dµk(x)−
∫
R

Qgk(x)dγ1(x)

=

(
1− 1

k

)∫
R

gk(x)dγ1(x) +
1

k

∫
R

gk(x)dγk(ξ−1)(x)−
∫
R

Qgk(x)dγ1(x)
k→∞−−−→ ξ − 1.

Finally, from (5.6) we obtain

δTal(µk) = 2Ent(µk||γ1)−W2
2 (µk, γ1)

k→∞−−−→ 0.

We remark that, in light of Theorem 5.5, it would seem more natural to have as a coun-

terexample a mixture of Gaussians with unit variance, as was done in [101] for the log-Sobolev

inequality. However, (5.2) tells us that the situation in Talagrand’s inequality is a bit more

delicate, since the inequality is stable with respect to the W1 metric. Thus, as in the given

example, a counterexample to stability (in the W2 metric or relative entropy) should satisfy

lim
k→∞
W1(µk, γ) = 0, while lim inf

k→∞
W2(µk, γ) > 0. keeping this in mind, it seems more straight-

forward to allow the second moments of the summands in the mixture to vary while keeping

their means fixed at the origin. This is also very similar to the counterexample, obtained in [83],

for the entropy power inequality.

5.3 The Föllmer process

Our method is based on the Föllmer process which was defined in (7). Recall that if µ is a

measure on Rd with expectation 0, a finite second moment matrix and a density f , relative to γ.

Then, we associated to it the Föllmer drift, vt, adapted to Ft. Define

Xt := Bt +

t∫
0

vs(Xs)ds,

which satisfies X1 ∼ µ, and as in (4),

Xt
law
= tX1 +

√
t(1− t)G,
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for G a standard Gaussian, independent from X1. Further recall the defining property of vt,

Ent(µ||γ) =
1

2

1∫
0

E
[
‖vt‖2

2

]
dt. (5.7)

As in the previous chapters, we also introduce the martingale counterpart,

E [X1|Ft] =

t∫
0

ΓsdBs,

for which it was shown in (10)

vt =

t∫
0

Γs − Id
1− s dBs. (5.8)

Finally, recall the representations, (11),(12),(13), which implied both the log-Sobolev and Tala-

grand’s inequality,

I(µ||γ) ≥ 2Ent(µ||γ) ≥ W2
2 (µ, γ) ,

through

Tr

1∫
0

E
[
(Γt − Id)

2]
(1− t)2

dt ≥ Tr

1∫
0

E
[
(Γt − Id)

2]
1− t dt ≥ Tr

1∫
0

E
[
(Γt − Id)

2] dt.
The above representations are especially useful, since they yield formulas for the deficits,

δLS (µ) = Tr

1∫
0

t · E
[
(Γt − Id)

2]
(1− t)2

dt, (5.9)

δTal (µ) ≥ Tr

1∫
0

t · E
[
(Γt − Id)

2]
1− t dt. (5.10)

The above formulas are the key to Corollary 5.6.

Proof of Corollary 5.6. Note that by (5.9) and (5.10), any estimate on δTal(µ) which is achieved

by bounding

Tr

1∫
0

t · E
[
(Γt − Id)

2]
1− t dt

from below will also imply a bound for δLS(µ). Since Theorem 5.3 and Theorem 5.5 are proved

using this method, the corollary follows.
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5.3.1 Properties of the Föllmer process

Our objective is now clear: In order to produce any stability estimates it will be enough to show,

roughly speaking, that the process Γt is far from Id, not too close to time 0. In order to establish

such claims we will use several other properties of the processes Γt, vt, which we now state and

prove. First, as in Lemma 1.28, it is possible use (5.8) along with integration by parts to obtain

the identity:

E [vt ⊗ vt] =
E [Id − Γt]

1− t + (Cov(µ)− Id) . (5.11)

Combining the fact that vt is a martingale with (5.8) we also see

d

dt
E
[
‖vt‖2

2

]
= Tr

E
[
(Id − Γt)

2]
(1− t)2

≥ 1

d

(
Tr

(
E [Id − Γt]

1− t

))2

=

(
E
[
‖vt‖2

2

]
− Tr (Cov(µ)− Id)

)2

d
, (5.12)

where we have used Cauchy-Schwartz for the inequality. Using this we prove the following two

lemmas:

Lemma 5.7. It holds that
d

dt
E [Γt] =

E [Γt]− E [Γ2
t ]

1− t .

Proof. Since Γt is a symmetric matrix equation (5.8) implies

d

dt
E [vt ⊗ vt] =

E [(Id − Γt)
2]

(1− t)2
.

Combined with (5.11), this gives

E [(Id − Γt)
2]

(1− t)2
=

d

dt

E [Id − Γt]

1− t =
E [Id − Γt]− (1− t) d

dt
E [Γt]

(1− t)2
.

Rearranging the terms yields the result.

Lemma 5.8. Suppose that Tr (Cov(µ)) ≤ d and let vt be as defined above. Then:

• For 0 ≤ t ≤ 1
2
, E
[
‖vt‖2

2

]
≤ E

[∥∥v1/2

∥∥2

2

]
2d

E
[
‖v1/2‖2

2

]
(1−2t)+2d

.

• For 1
2
≤ t ≤ 1, E

[
‖vt‖2

2

]
≥ E

[∥∥v1/2

∥∥2

2

]
2d

E
[
‖v1/2‖2

2

]
(1−2t)+2d

.

Proof. Since Tr (Cov(µ)) ≤ d, (5.12) gives

d

dt
E
[
‖vt‖2

2

]
≥
(
E
[
‖vt‖2

2

])2

d
.
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The unique solution to the differential equation

g′(t) =
g(t)2

d
, with inital condition g

(
1

2

)
= E

[∥∥v1/2

∥∥2

2

]
,

is given by

g(t) = E
[∥∥v1/2

∥∥2

2

] 2d

E
[∥∥v1/2

∥∥2

2

]
(1− 2t) + 2d

.

The result follows by Gronwall’s inequality

To get a different type of inequality, but of similar flavor, recall (4),

Xt
law
= tX1 +

√
t(1− t)G,

where G is a standard Gaussian, independent from X1. Now, suppose that µ satisfies a Poincaré

inequality with optimal constant Cp(µ). In this case Xt satisfies a Poincaré inequality with a

constant smaller than t2Cp(µ) + t(1− t). This follows from the fact that the Poincaré constant

is sub-additive with respect to convolutions ( [49]) and that if X ∼ ν and aX ∼ νa for some

a ∈ R, then Cp(νa) = a2Cp(ν). Applying the Poincaré inequality to vt(Xt), we get

E
[
‖vt‖2

2

]
≤
(
t2Cp(µ) + t(1− t)

) [
‖∇vt‖2

2

]
=
(
t2Cp(µ) + t(1− t)

) d
dt

[
‖vt‖2

2

]
, (5.13)

where the equality is due to the fact that vt is a martingale. Repeating the proof of Lemma 5.8

for the differential equation

g(t) =
(
t2Cp(µ) + t(1− t)

)
g′(t), with inital condition g

(
1

2

)
= E

[∥∥v1/2

∥∥2

2

]
,

proves:

Lemma 5.9. Assume that µ has a finite Poincaré constant Cp(µ) <∞. Then, for vt defined as

above:

• For 0 ≤ t ≤ 1
2
,

E
[
‖vt‖2

2

]
≤ E

[∥∥v1/2

∥∥2

2

] (Cp(µ) + 1) t

(Cp(µ)− 1) t+ 1
.

• For 1
2
≤ t ≤ 1,

E
[
‖vt‖2

2

]
≥ E

[∥∥v1/2

∥∥2

2

] (Cp(µ) + 1) t

(Cp(µ)− 1) t+ 1
.
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5.4 Stability for Talagrand’s transportation-entropy inequal-
ity

We begin this section by showing two ways the Föllmer process may be used to establish quan-

titative stability estimates. As before, µ is a fixed measure on Rd with finite second moment

matrix. Γt and vt are defined as in the previous section. Fix t0 ∈ [0, 1], by (5.10), we see

δTal(µ) ≥ t0Tr

1∫
t0

E
[
(Id − Γt)

2]
1− t dt.

Now, using (5.8), we obtain, by Fubini’s theorem,

1∫
t0

(
E
[
‖vs‖2

2

]
− E

[
‖vt0‖2

2

])
ds = Tr

1∫
t0

s∫
t0

E
[
(Id − Γt)

2]
(1− t)2

dtds = Tr

1∫
t0

E
[
(Id − Γt)

2]
1− t dt,

and

δTal(µ) ≥ t0

 1∫
t0

E
[
‖vt‖2

2

]
dt− (1− t0)E

[
‖vt0‖2

2

] ≥ t0(1−t0)
(
2Ent(µ||γ)− E

[
‖vt0‖2

2

])
,

(5.14)

where we have used (11) and the fact that vt is a martingale. Another useful bound will follow

by applying (5.8) to rewrite (5.10) as

δTal(µ) ≥ Tr

1∫
0

t(1− t) · E
[
(Γt − Id)

2]
(1− t)2

dt =

1∫
0

t(1− t) d
dt
E
[
‖vt‖2

2

]
dt.

Integration by parts then gives

δTal(µ) ≥
1∫

0

(2t− 1)E
[
‖vt‖2

2

]
dt. (5.15)

At an informal level, the above formula becomes useful if one is able to show that E
[
‖vt‖2

2

]
is

large for t ≥ 1
2

and small otherwise.

5.4.1 Measures with a finite Poincaré constant

We now assume that the measure µ has a finite Poincaré constant Cp(µ) <∞.
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Proof of Theorem 5.1. First, suppose that E
[∥∥v1/2

∥∥2

2

]
≤ Ent(µ||γ). In this case (5.14) shows

δTal ≥
1

4
Ent(µ||γ).

Otherwise, E
[∥∥v1/2

∥∥2

2

]
> Ent(µ||γ), and plugging Lemma 5.9 into (5.15) shows

δTal(µ) ≥ Ent(µ||γ)

1∫
0

(2t− 1)
(Cp(µ) + 1)t

(Cp(µ)− 1)t+ 1
dt

= Ent(µ||γ)
(Cp(µ) + 1) (2− 2Cp(µ) + (Cp(µ) + 1) ln (Cp(µ)))

(Cp(µ)− 1)3
,

where the equality relies on the fact

d

dt

(Cp(µ) + 1) ((Cp(µ)− 1)t(Cp(µ)(t− 1)− 1− t) + (Cp(µ) + 1) ln ((Cp(µ)− 1)t+ 1))

(Cp(µ)− 1)3

= (2t− 1)
(Cp(µ) + 1)t

(Cp(µ)− 1)t+ 1
.

The proof is complete.

5.4.2 Measures with small covariance

Here we work under the assumption Tr(Cov(µ)) ≤ d and prove Theorem 5.3.

Proof of Theorem 5.3. Denote cµ = E
[∥∥v1/2

∥∥2

2

]
. We begin by considering the case cµ ≤

Ent(µ||γ). In this case, (5.14) shows

δTal(µ) ≥ 1

4
Ent(µ||γ).

In the other case, cµ > Ent(µ||γ) and Lemma 5.8, along with (5.15), gives

δTal(µ) ≥ 2d

1∫
0

cµ(2t− 1)

cµ (1− 2t) + 2d
dt

= 2d

(−d ln (cµ + 2d− 2cµt)− cµt
cµ

) ∣∣∣1
0

=
2d (d ln(2d+ cµ)− d ln(2d− cµ)− cµ)

cµ

= 2d

2d coth−1
(

2d
cµ

)
cµ

− 1

 .
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Note that (5.11) implies cµ ≤ 2d, so the above is well defined. Also, for any x ≥ 1, we have the

inequality coth−1(x) · x− 1 ≥ 1
3x2 , applying it to the previous bound then gives

δTal(µ) ≥ c2
µ

6d
>

Ent (µ||γ)2

6d
.

We can get a dimension free bound by considering directions v ∈ Rd in which Cov(µ) is

strictly smaller than the identity. For this we use Lemma 5.7 to establish:

d

dt
E [Γt] =

E [Γt]− E [Γ2
t ]

1− t � E [Γt]− E [Γt]
2

1− t .

Fix v ∈ Rd, a unit vector, and define f(t) = 〈v,E [Γt] v〉. As E [Γt] is symmetric, by Cauchy-

Schwartz

〈v,E [Γt] v〉2 ≤
〈
v,E [Γt]

2 v
〉
.

This implies
d

dt
f(t) ≤ f(t)(1− f(t))

1− t .

If 〈v,E [Γ0] v〉 = λ, from Gronwall’s inequality we get

〈v,E [Γt] v〉 ≤
λ

(λ− 1)t+ 1
. (5.16)

Using this, we prove Theorem 5.2.

Proof of Theorem 5.2. For λi < 1, let wi be the unit eigenvector of Cov(µ), corresponding to

λi. From (5.16) we deduce, for every t ∈ [0, 1],

0 ≤ 〈wi,E [Γt]wi〉 ≤ 1.

We now observe that as vt is a martingale, and since µ is centered, it must hold that v0 = 0,

almost surely. Combining this with (5.11) shows E [Γ0] = Cov(µ) and in particular

〈wi,E [Γ0]wi〉 = λi.

Using (5.16) and the fact that E [Γt] is symmetric, we obtain:

t

〈
wi,E

[
(Id − Γt)

2]wi〉
1− t ≥ t

(〈wi,E [Id − Γt]wi〉)2

1− t ≥
t
(

1− λi
(λi−1)t+1

)2

1− t = t(1− t)
(

λi − 1

(λi − 1)t+ 1

)2

.
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So, by (5.10),

δTal (µ) ≥ Tr

1∫
0

t · E
[
(Id − Γt)

2]
1− t dt ≥

d∑
i=1

1{λi<1}

1∫
0

t ·
〈
vi,E

[
(Id − Γt)

2] vi〉
1− t dt

≥
d∑
i=1

1{λi<1}

1∫
0

t(1− t)
(

λi − 1

(λi − 1)t+ 1

)2

dt

=
d∑
i=1

2(1− λi) + (λi + 1) log(λi)

λi − 1
1{λi<1}.

5.4.3 Stability with respect to Gaussian mixtures

In this section we prove Theorem 5.5. Our proof is based on [101], but we use our framework

to give an improved analysis. To control the relative entropy we will use a specialized case of

the bound given in Lemma 1.13. We supply here a sketch of the proof for the convenience of

the reader.

Lemma 5.10. Let Ht be an Ft-adapted matrix-valued processes and let Nt be defined by

Nt =

∫ t

0

HsdBs.

Suppose that H̃t is such that for some t0 ∈ [0, 1]:

1. H̃t = Ht almost surely, for t < t0.

2. For t ≥ t0, H̃t is deterministic and H̃t � Id.

Then, if Mt is defined by

Mt =

∫ t

0

H̃sdBs,

we have

Ent (N1||M1) ≤ Tr

1∫
t0

E
[(
Ht − H̃t

)2
]

1− t dt.

Proof. Define the process

Yt =

t∫
0

H̃sdBs +

t∫
0

s∫
0

Hr − H̃r

1− r dBrds.
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Denote ut =
t∫

0

Hs−H̃s
1−s dBs, so that, dYt = H̃tdBt + utdt, and, by assumption ut = 0, whenever

t < t0. It follows that Yt = Mt for t < t0 and that, using Fubini’s theorem, Y1 = N1. Indeed,

Y1 =

1∫
0

H̃tdBt +

1∫
0

t∫
0

Hs − H̃s

1− s dBsdt =

1∫
0

H̃tdBt +

1∫
0

(
Ht − H̃t

)
dBt = N1. (5.17)

We denote now by P , the measure under which B is a Brownian motion. If

E := exp

− 1∫
0

H̃−1
t utdBt −

1

2

1∫
0

∥∥∥H̃−1
t ut

∥∥∥2

dt

 ,

and we define the tilted measure Q = EP , then by Girsanov’s theorem, B̃t = Bt +
t∫

0

H̃−1
s usds

is a Brownian motion under Q and we have the representation

Yt =

t∫
0

H̃sdB̃s.

If t < t0, then as ut = 0, we have B̃t = Bt and Yt0 has the same law under Q and under P ,

which is the law of Mt0 . Moreover, for t ≥ t0, H̃t is deterministic. Therefore, it is also true that

the law of

Yt0 +

1∫
t0

H̃tdB̃t,

under Q and the law of

Yt0 +

1∫
t0

H̃tdBt,

under P coincide. We thus conclude that, under Q, Y1 has the same law as M1 under P . In

particular, if ρ is the density of Y1 with respect to M1, this implies

1 = EP [ρ(M1)] = EQ [ρ(Y1)] = EP [ρ(Y1)E ] .

By Jensen’s inequality, under P ,

0 = ln (E [ρ(Y1)E ]) ≥ E [ln (ρ(Y1)E)] = E [ln(ρ(Y1))] + E [ln(E)] .
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But,

−E [ln(E)] =
1

2

1∫
0

E
[∥∥∥H̃−1

t ut

∥∥∥2
]
dt ≤

1∫
t0

E
[
‖ut‖2] dt

= Tr

1∫
t0

s∫
t0

E
[(
Hs − H̃s

)2
]

(1− s)2
dsdt = Tr

1∫
t0

1∫
s

E
[(
Hs − H̃s

)2
]

(1− s)2
dtds

= Tr

1∫
t0

E
[(
Hs − H̃s

)2
]

1− s ds,

and, from (5.17)

EP [ln(ρ(Y1))] = Ent(N1||M1),

which concludes the proof.

Remark 5.11. In order to apply Girsanov’s theorem in the proof above, one must also require

some integrability condition from the drift ut. It will suffice to assume

1∫
0

E
[∥∥∥H̃−1

t ut

∥∥∥2
]
dt <∞.

Indeed, if
1∫
0

∥∥∥H̃−1
t ut

∥∥∥2

dt is uniformly bounded, then Novikov’s criterion applies. The general

case may then be obtained by an approximation argument (see [165, Proposition 1] for more

details). In our application below this condition will be satisfied.

We are now in a position to prove that stability with respect to Gaussian mixtures holds in

relative entropy.

Proof of Theorem 5.5. Fix t0 ∈ [0, 1], by (5.10) we get

δTal(µ) ≥ t0Tr

1∫
t0

E
[
(Id − Γt)

2]
1− t dt. (5.18)

Define the matrix-valued process

Γ̃t =

Γt 0 ≤ t < t0

1−t0
t0(t−2)+1

Id t0 ≤ t ≤ 1
,
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and the martingale

Mt =

t∫
0

Γ̃sdBs.

One may verify that
1∫

t0

(
1− t0

t0(t− 2) + 1

)2

dt = 1,

which implies, M1 −Mt0 =
1∫
t0

Γ̃t(Mt)dBt ∼ γ. Also, from (9),

Mt =

t0∫
0

Γ̃tdBt =

t0∫
0

ΓtdBt = E [X1|Ft0 ] .

If νt0 is the law of E [X1|Ft0 ], then since {Bs}s>t0 is independent from E [X1|Ft0 ], we have that

νt0 ∗ γ is the law of M1. We now invoke Lemma 5.10 with the process E [X1|Ft] as Nt. Since

Γ̃t meets the conditions of the lemma, we get

Ent(X1||M1) = Ent(µ||νt0 ∗ γ) ≤ Tr

1∫
t0

E
[(

Γt − Γ̃t

)2
]

1− t dt

≤ 2Tr

1∫
t0

E
[(

Γt − Id

)2
]

1− t dt+ 2Tr

1∫
t0

E
[(

Γ̃t − Id

)2
]

1− t dt.

Observe that by showing that the above integrals are finite we will also verify the integrability

condition from Remark 5.11. Applying (5.18),

2Tr

1∫
t0

E
[(

Γt − Id

)2
]

1− t dt ≤ 2
δTal(µ)

t0
.

To bound the second term we calculate

2Tr

1∫
t0

E
[(

Γ̃t − Id

)2
]

1− t dt = 2d

1∫
t0

(
1−t0

t0(t−2)+1
− 1
)2

1− t dt

= 2d

(
− ln(1 + t0(t− 2))− 1− t0

2(t− t0) + 1

) ∣∣∣1
t0

= 2d

(
ln(1− t0) +

t0
1− t0

)
.
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Combining the last displays, we get

Ent(µ||νt0 ∗ γ) ≤ 2

(
δTal(µ)

t0
+ d

(
ln(1− t0) +

t0
1− t0

))
.

Suppose that δTal(µ) ≥ d, then choosing t0 = 1
2

gives

Ent(µ||νt0 ∗ γ)

6
≤ δTal(µ).

Otherwise, δTal(µ) < d and we choose t0 =
(
δTal(µ)
d

) 1
3 ≤ 1

2
. A second order approximation,

shows that for s ∈ [0, 1
2
],

ln(1− s) +
s

1− s ≤ 2s2.

Hence, for the above choice of t0,

Ent(µ||νt0 ∗ γ) ≤ 2
δTal(µ)

t0
+ 4dt0

2 = 3δTal(µ)
2
3d

1
3 .

This implies
1

3
√

3

Ent(µ||νt0 ∗ γ)
3
2√

d
≤ δTal(µ),

which is the desired claim. Finally, by the law of total variance, it is immediate that

Cov (νt0) � Cov (µ) .

5.5 An application to Gaussian concentration

We now show that our stability bounds imply an improved Gaussian concentration inequality

for concave functions.

Corollary 5.12. Let f be a concave function and G ∼ γ in Rd. Suppose that f is even, then for

any t ≥ 0,

P (f(G) ≥ t) ≤ e
− 4t2

7E[‖∇f(G)‖22] .

Before proving the result we mention that our proof follows the one presented in [212]. We

use Theorem 5.1 to improve the constant obtained there. One should also compare the corollary

to the main result of [205] which used Ehrhard’s inequality in order to show that E
[
‖∇f(G)‖2

2

]
may be replaced by the smaller quantity Var(f(G)), at the cost of a worse constant in the

exponent.

The assumption that f is even is used here for simplicity and could be relaxed.
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Proof of Corollary 5.12. For λ > 0, denote the measure νλ = eλf

Eγ[eλf ]
dγ and let (X, Y ) be a

random vector in R2d which is a realization of the optimal coupling between νλ and γ. That is,

X ∼ νλ, Y ∼ γ and

W2(νλ, γ) =
√
E
[
‖X − Y ‖2

2

]
.

As f is concave, we have by using Cauchy-Schwartz:

Eνλ [λf ]− Eγ [λf ] ≤ E [〈∇λf(Y ), X − Y 〉] ≤
√
λ2E

[
‖∇f(Y )‖2

2

]√
E
[
‖X − Y ‖2

2

]
=
√
λ2Eγ

[
‖∇f‖2

2

]
W2(νλ, γ). (5.19)

Since f is concave, νλ has a log-concave density with respect to the standard Gaussian. For

such measures, Brascamp-Lieb’s inequality ( [50]) dictates that Cp(νλ) ≤ 1. Note that

(x+ 1)(2− 2x+ (x+ 1) ln(x)

(x− 1)3
≥ 1

3
, whenever x ∈ [0, 1].

In this case, since f is even and νλ is centered, Theorem 5.1 gives us,

δTal(νλ) ≥
1

4
Ent (νλ||γ) ,

which is equivalent to

W2
2 (νλ, γ) ≤ 7

4
Ent(νλ||γ).

Combining this with (5.19) and the assumption, Eγ [λf ] = 0, yields

Eνλ [λf ] ≤
√
λ2

7

4
Eγ
[
‖∇f‖2

2

]
Ent(νλ||γ).

For any x, y ≥ 0 we have the inequality,
√
xy ≤ x

4
+ y. Observe as well that

Ent(νλ||γ) = Eνλ [λf ]− ln
(
Eγ
[
eλf
])
.

Thus, ln
(
Eγ
[
eλf
])
≤ λ2 7

16
Eγ
[
‖∇f‖2

2

]
. By Markov’s inequality, for any λ, t > 0

P (f(G) ≥ t) = P
(
eλf(G) ≥ eλt

)
≤ Eγ

[
eλf
]
e−λt ≤ exp

(
λ2 7

16
Eγ
[
‖∇f‖2

2

]
− λt

)
.

We now optimize over λ to obtain,

P (f(G) ≥ t) ≤ e
− 4t2

7Eγ[‖∇f‖22] .
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6
Stability of Invariant Measures, with

Applications to Stability of Moment

Measures and Stein Kernels

6.1 Introduction

Let Xt, Yt be stochastic processes in Rd which satisfy the SDEs,

dXt = a(Xt)dt+
√

2τ(Xt)dBt, dYt = b(Yt)dt+
√

2σ(Yt)dBt. (6.1)

Here Bt is a standard Brownian motion, a, b are vector-valued functions, and σ, τ take values in

the cone of symmetric d × d positive definite matrices, which we shall denote by S++
d . Given

X0 and Y0, we shall write the marginal laws of the processes as Xt ∼ µt and Yt ∼ νt.

Suppose that, in some sense to be made precise later, a is close to b, and τ is close σ. One

can ask whether the measure µt must then be close to νt. Our goal here is to study the quantita-

tive regime of this problem. The method used here is an adaptation of a technique developed by

Crippa and De Lellis for transport equations. That method was introduced in the SDE setting

in [67, 167]. Our implementation here will be a bit different, to allow for estimates in weighted

Sobolev space that behave better for large times, and will allow us to compare the invariant
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measures of the two processes, under suitable ergodic assumptions.

We will be especially interested in the case where, Xt and Yt admit unique invariant mea-

sures, which we shall denote, respectively, as µ and ν. In this setting, we will think about ν as

the reference measure and quantify the discrepancy in the coefficients as:

β := ‖a− b‖L1(ν) + ‖√σ −√τ‖L2(ν).

Remark that, throughout the paper, unless otherwise specified, when a matrix norm is consid-

ered, we treat it as the Hilbert-Schmidt norm. Our main result is an estimate of the form (see

precise formulation below)

dist(µ, ν) ≤ h(β),

where dist(·, ·) stands for an appropriate notion of distance, which will here be a transport dis-

tance, and lim
β→0

h(β) = 0.

While the assumption of unique invariant measures is certainly non-trivial to verify for

general coefficients, we also show how to apply our stability estimates in some specific cases of

interest. In particular, we will show that if two uniformly log-concave measures satisfy certain

similar integration by parts formulas, in the sense arising in Stein’s method, then the measures

must be close. This problem was the original motivation of our study.

6.1.1 Background on stability for transport equations

Part of the present work is a variant in the SDE setting of a now well-established quantitative

theory for transport equations with non-smooth coefficients, pioneered by Crippa and De Lellis

[87].

As demonstrated by the DiPerna-Lions theory ( [94] and later estimates in [87]), there is a

significant difference in the stability of solutions to differential equations when the coefficients

are Lipschitz continuous versus when they only belong to some Sobolev space (and are not

necessarily globally Lipschitz). Our focus will be on the latter, and arguably more challenging,

case. As we shall later discuss, the techniques can be carried over to the setting of stochastic

differential equations we are interested in here, as worked out in [67, 167].

The strategy for quantitative estimates, introduced in [87], in the Lagrangian setting relies

on controlling the behavior of ln(1+|Xt−Yt|/δ) for two flows (Xt) and (Yt), with a parameter δ

that will be very small, of the order of the difference between the vector fields driving the flows.

A crucial idea is the use of the Lusin-Lipschitz property of Sobolev vector fields [169], which

allows to get Lipschitz-like estimates on large regions, in a controlled way. We will discuss this

idea in more details in Section 6.2.2. The ideas of [87] were adapted to the Eulerian setting

in [215, 216], using a transport distance with logarithmic cost.
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Existence and uniqueness of solutions to SDEs and Fokker-Planck equations with non-

smooth coefficients by adapting DiPerna-Lions theory was first addressed in [117, 158], in-

spiring many further developments, such as [67, 109, 232, 244]. We will not discuss much the

issue of well-posedness here, and focus on more quantitative aspects of the problem. We refer

for example to [167, Section 3.1] and [232] for a comprehensive discussion of the issues, in

particular with respect to the different ways of defining a notion of solution. As pointed out

in [67, 167], the kind of quantitative methods used here could also prove well-posedness by

approximation with processes with smoother coefficients.

6.2 Results

6.2.1 Main result

We consider two diffusion processes of the form (6.1), and assume that they admit unique

invariant measures µ and ν. We fix some real number p ≥ 2 with q its Hölder conjugate, so that
1
q

+ 1
p

= 1. We then make the following assumptions:

H1. (Regularity of coefficients) There exists a function g : Rd → R, such that for almost

every x, y ∈ Rd:

‖a(x)− a(y)‖, ‖
√
τ(x)−

√
τ(y)‖ ≤ (g(x) + g(y))‖x− y‖, (6.2)

and

‖g‖L2q(µ) <∞.

To simplify some notations later on, we also assume that g ≥ 1 pointwise, which does

not strengthen the assumption since we can always replace g by max(g, 1).

H2. (Integrability of relative density) Both µ and ν have finite second moments, and it holds

that ∥∥∥∥dνdµ
∥∥∥∥
Lp(µ)

<∞.

H3. (Exponential convergence to equilibrium) There exist constants κ,CH > 0 such that for

any initial data µ0 and any t ≥ 0 we have

W2(µt, µ) ≤ CHe
−κ·tW2(µ0, µ).

We denote for the second moments

m2
2(µ) =

∫
Rd

|x|2dµ, m2
2(ν) =

∫
Rd

|x|2dν.
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Concerning Assumption (H1), it is the Lusin-Lipschitz property we mentioned above, and

which we shall discuss in some depth in Section 6.2.2 below. One should think about it as

being a generalization of Lipschitz continuity, as it essentially means σ and a may be well

approximated by Lipschitz functions on arbitrarily large sets. In particular, this property holds

for Sobolev functions when the reference measure is log-concave. When CH = 1, the third

assumption corresponds to contractivity, which for reversible diffusion processes is equivalent

to a lower bound on the Bakry-Emery curvature [241]. Allowing for a constant CH > 1 allows

to cover other examples, such as hypocoercive dynamics, notably because the assumption is

then invariant by change of equivalent metric, up to the value of CH . See for example [28,182]

Now, for R > 0, define the truncated quadratic Wasserstein distance by:

W̃2
2,R(ν, µ) := inf

π

∫
min(|x− y|2, R)dπ, (6.3)

where the infimum is taken over all couplings of µ and ν. Here, we say that π is a coupling

of µ and ν if π is a measure on R2d whose marginals on the first and last d coordinates equal

µ and ν, respectively. This is a distance on the space of probability measures, weaker than the

classicalW2. With the above notations our main result reads:

Theorem 6.1. Assume (H1),(H2) and (H3) hold, and denote

β := ‖a− b‖L1(ν) + ‖√σ −√τ‖L2(ν).

Then, for any R > 1,

W̃2
2,R(ν, µ) ≤ 100C2

HR·‖g‖2
L2q(µ) ‖dν/dµ‖Lp(µ)

ln
(

ln
(

1 + R
β

))
+ ln

(
m2(µ) +m2(ν)

)
+ κ ·R

κ · ln
(

1 + R
β

) ,

where 1
q

+ 1
p

= 1.

Remark 6.2. Essentially, the theorem says that W̃2,R(ν, µ) decreases at a rate which is pro-

portional to

√
ln
(

1 + R
β

)−1

. We could improve the rate to ln
(

1 + R
β

)−1

by considering a

truncated W1 distance, as shall be discussed in Remark 6.8. However, for our application to

Stein kernels it is more natural to work withW2.

Let us discuss now the role of the term ‖dν/dµ‖Lp(µ) in Theorem 6.1. In order to use

‖a − b‖L1(ν) + ‖√σ − √τ‖L2(ν) as a measure of discrepancy, it seems necessary that the sup-

ports of µ and ν intersect, otherwise we could just change σ and a on a µ-negligible set and

have β = 0 in the conclusion of the theorem, which obviously fails in this particular situation.

Thus, since the bound in Theorem 6.1 only makes sense when ‖dν/dµ‖Lp(µ) is finite, one may

view this term as an a-priori guarantee on the common support of µ and ν.
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The logarithmic rate obtained here may seem quite weak. In the setting of transport equa-

tions, the logarithmic bounds obtained by the method considered here are sometimes actually

sharp [216]. We do not know much about optimality in the stochastic setting, since it may

be that the presence of noise would help, while the method used here cannot do better in the

stochastic setting than in the deterministic setting.

As alluded to in the introduction, if the coefficients a and
√
τ are actually L-Lipschitz, in

which case g ≡ L
2

in (H1), then one may greatly improve the rate in Theorem 6.1.

Theorem 6.3. Assume a and
√
τ are L-Lipschitz and that (H3) holds, and denote

β := ‖a− b‖L2(ν) + ‖√τ −√σ‖L2(ν).

Then,

W2(ν, µ) ≤ 15C
4L2+1

2κ
H β

(
L

κ
+ 1

)
.

This type of estimate is part of the folklore, and a version of it appears for example in [45].

6.2.2 About the Lusin-Lipschitz property for Sobolev functions

We will now discuss in some more depth Assumption (H1). As mentioned previously, it is

motivated by the Lusin-Lipschitz property of Sobolev functions with respect to the Lebesgue

measure [169]: if a function f : Rd −→ R satisfies
∫
|∇f |pdx <∞ then for a.e. x, y ∈ Rd we

have

|f(x)− f(y)| ≤ (M |∇f |(x) +M |∇f |(y))|x− y|, (6.4)

where M is the Hardy-Littlewood maximal operator, defined on a non-negative function g as,

Mg(x) := sup
r>0
|Br|−1

∫
Br(x)

g(y)dy,

C a dimension-free constant, and Br is the Euclidean ball of radius r. This operator satisfies

the dimension-free continuity property

||Mf ||Lp(dx) ≤ Cp||f ||Lp(dx),

when p > 1. The dimension-free bound on Cp is due to E. Stein [226]

In particular, if∇f ∈ Lp(dx), then f is λ-Lipschitz on the regions where M |∇f | is smaller

than λ/2, which are large when λ is, by the Markov inequality. The important distinction

between using an estimate on M |∇f | instead of ∇f is that, even if both ∇f(x) and ∇f(y) are

controlled, we do not automatically get an estimate on f(x)− f(y), since the straight line from

x to y may well go through a region where |∇f | is arbitrarily large. The use of (6.4) nicely

bypasses this issue.
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An important issue for the applications we shall discuss here is that working in functional

spaces weighted with the Lebesgue measure is not always the most natural when dealing with

stochastic processes. It is often preferable to work in Lp(µ) with a probability measure adapted

to the problem considered, which here shall be the invariant measure of the reference stochastic

process. However, in general the maximal operator has no reason to be continuous over Lp(µ),

unless µ has density with respect to the Lebesgue measure that is uniformly bounded from

above and below on its support. As soon as µ is not compactly supported, this cannot be the

case. Therefore, we shall make strong use of a work of Ambrosio, Brué and Trevisan [7], which

proves a Lusin-type property for Sobolev functions with respect to a log-concave measure. The

proof uses an operator different from the Hardy-Littlewood maximal operator, more adapted

to the setting. We shall not discuss here the specifics of that operator, since we only need the

Lusin property, and not the maximal operator itself. The exact statement of their result, in the

restricted setting of log-concave measures on Rd, is as follows:

Proposition 6.4. Let µ be a log-concave measure, and p ≥ 2. Then for any function f ∈
W 1,p(µ), there exists a function g such that |f(x)− f(y)| ≤ (g(x) + g(y))|x− y| for a.e. x and

y, and with ||g||Lp(µ) ≤ Cp||∇f ||Lp(µ) with Cp some universal constant, that only depends on p.

This statement is proved in [7, Theorem 4.1], and also holds for maps taking values in some

Hilbert space. It is written there only for p = 2, but the reason for that restriction is that

they work in the more general setting of possibly nonsmooth RCD spaces, rather than just Rd

endowed with a measure. The only point where they require the restriction to p = 2 is when

using the Riesz inequality [7, Remark 3.9], which in the smooth setting is known for general

values of p, as proved in [19].

6.2.3 Related works

As mentioned previously, the adaptation of the Crippa-De Lellis method to derive quantitative

estimates for stochastic differential equations was already considered in [67] and [167].

The results of [167] give stability estimates with bounds that depend on ||∇σ||Lp(dx). Con-

sidering estimates weighted with the Lebesgue measure allows to use the Hardy-Littlewood

maximal function directly. As mentioned above, the main focus here is to get estimates that

are weighted with respect to a probability measure adapted to the problem, which may behave

very differently, for example when the coefficients of the two SDE are uniformly close, but not

compactly supported.

To use estimates in weighted space, [67] considers functions such that∫
(M |f |)2dµt +

∫
(M |∇f |)2dµt <∞,

with µt the flow of the SDE. The authors also consider other function spaces of the same nature,

sharper in dimension one, or that handle weaker integrability conditions onM |∇f | than Lp (but
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stronger than L1). Since the space depends on the law of the flow at all times, it may be difficult

to determine estimates on such norms. For the application considered in Section 6.2.4, we do

not know whether the approach of [67] could apply.

We shall also focus on establishing very explicit quantitative estimates in transport distance,

highlighting in particular the dependence on the dimension.

Another approach was developed in [45] to directly obtain relative entropy estimates be-

tween the distributions at finite times. The upside of that approach is that the quantitative

estimates are quite stronger, depending polynomially on some distance between the coeffi-

cients. The two downsides are that they depend on stronger Sobolev norms, requiring that the

derivatives of the two diffusion coefficients are close in some sense, as well as a-priori Fisher

information-like bounds on the relative densities, rather thanLp bounds. Fisher information-like

estimates were then derived in [46] by directly comparing generators via a Poisson equation,

also using stronger Sobolev norms.

Finally, when the two diffusion coefficients match, one can derive relative entropy bounds

via Girsanov’s theorem. Unfortunately, this strategy cannot work when the two diffusion coef-

ficients differ.

6.2.4 An application to Stein kernels

We now explain how our result might be applied in the context of Stein’s method for bounding

distances between probability measures. Given a measure ν onRd andX ∼ ν, we slightly relax

the definition of Stein kernels, given in the introduction to this thesis and define a matrix valued

map τ : Rd →Md(R), such that:

E [〈∇f(X), X〉] = E
[
〈∇2 f(X), τ(X)〉HS

]
. (6.5)

The main difference is that here we consider test functions f : Rd → R. As before, the

map τγ ≡ Id, which is constantly identity, is a Stein kernel for γ. Stein’s lemma suggests

that if τν is close to the identity then ν should be close γ. This is in fact true, and there are

many examples of precise quantitative statements implementing this idea, for various distances

between measures, such as transport distances, the total variation distance, or the Kolmogorov

distance in dimension 1. The one most relevant to the present work is inequality (20), which

states that for any τ which is a Stein kernel for a measure ν,

W2
2 (ν, γ) ≤ ‖τ − Id‖L2(ν). (6.6)

The proof of this inequality strongly relies on Gaussian algebraic identities, such as the Mehler

formula for the Ornstein-Uhlenbeck semigroup. We are interested in similar estimates when

neither of the measures are Gaussian. The main motivation comes from the fact that many ways

of implementing Stein’s method, including the one developed in [161], are hard to use for target
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measures that do not satisfy certain exact algebraic properties (typically, explicit knowledge

of the eigenvectors of an associated Markov semigroup). We shall prove a weaker inequality

holds for certain non-Gaussian reference measures and for one particular construction of Stein

kernels. To understand this construction we require the following definition.

Definition 6.5 (Moment map). Let µ be a measure on Rd. A moment map of µ is a convex

function ϕ : Rd → R such that e−ϕ is a centered probability density whose push-forward by

∇ϕ is µ.

As was shown in [80, 213], if µ is centered and has a finite first moment and a density, then

its moment map exists and is unique as long as we enforce essential continuity at the boundary

of its support. The moment map ϕ can be realized as the optimal transport map between some

source log-concave measure and the target measure µ, where we enforce that gradient of the

source measure’s potential must equal the transport map itself. The correspondence between

the convex function ϕ and the measure µ is actually a bijection, up to a translation of ϕ, and the

measure associated with a given convex function is known as its moment measure.

If µ has a density ρ, then ϕ solves the Monge-Ampère-type PDE

e−ϕ = ρ(∇ϕ) det(∇2ϕ).

This PDE, sometimes called the toric Kähler-Einstein PDE, first appeared in the geometry lit-

erature [34,95,164,242], where it plays a role in the construction of Kähler-Einstein metrics on

certain complex manifolds. Variants with different nonlinearities have recently been considered,

for example in [150].

The connection between moment maps and Stein kernels was made in [112]. Specifically,

it was proven that if ϕ is the moment map of µ, then (up to regularity issues) the matrix valued

map,

τµ := ∇2 ϕ(∇ϕ−1), (6.7)

is a Stein kernel for µ. Since ϕ is a convex function, τµ turns out to be supported on posi-

tive semi-definite matrices. For this specific construction of a Stein kernel we will prove the

following analogue of (6.6).

Theorem 6.6. Let µ be a log-concave measure on Rd such that

αId ≤ −∇2 ln (dµ/dx) ≤ 1

α
Id,

for some α ∈ (0, 1] and let τµ be its Stein kernel defined in (6.7). If ν is any other probability

measure and σ is a Stein kernel for ν which is almost surely positive definite and bounded from
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below, then for β = ‖√τ −√σ‖L2(µ) and M = max (m2
2(µ),m2

2(ν)),

W2
2 (µ, ν) ≤ Cα−6d3M2 ln(M)2‖dν/dµ‖∞

ln
(

ln
(

1 + M2

β

))
+M2 ln(M)2

ln
(

1 + M2

β

) .

Moreover, if µ is radially symmetric, has full support, and d > c, for some universal constant

c > 0,

W2
2 (µ, ν) ≤ Cα−20d7/2M2 ln(M)2‖dν/dµ‖L2(µ)

ln
(

ln
(

1 + M2

β

))
+M2 ln(M)2

ln
(

1 + M2

β

) .

Finally, if√τµ is L-Lipschitz, then

W2
2 (µ, ν) ≤ 100α−(4L2+1) (2L+ 1) β.

It should be emphasized that, except in dimension one, Stein kernels are not unique. Differ-

ent constructions than the one studied here have been provided for example in [68,85,178,195].

Unlike the functional inequalities of [161] for the Gaussian measure, our results will only work

for the Stein kernels constructed from moment maps (at least for one of the two measures). In

particular, in order to define a stochastic flow from a Stein kernel, we must require the kernel to

take positive values, which to our knowledge is not guaranteed for other constructions.

While this estimate is somewhat weak, it seems to be one of the few instances where we can

estimate a distance from a discrepancy for a class of target measures, without explicit algebraic

requirements for an associated Markov generator. Recently, there has been progress on imple-

menting Stein’s method for wide classes of target measures via Malliavin calculus [111, 127].

Note that if one of the two measures is Gaussian, since the natural Stein kernel for the

standard Gaussian is constant, and hence Lipschitz, one could use the stronger Theorem 6.3

to get a stability estimate, which would still be weaker than that of [161], but with the sharp

exponent.

One may wonder why we do not prove this type of estimate directly using Stein’s method.

The key difference lies in that we do not need a second-order regularity bound on solutions of

Stein’s equation, which we do not even know how to prove here. To be more precise, the natural

way to try to use Stein’s method for this problem would be to apply the generator approach using

the generator of the process dXt = −Xtdt +
√

2τ(Xt)dBt, where τ is the Stein kernel for µ.

Applying Stein’s method to bound say theW1 distance would require us to bound ||∇f ||∞ and

||∇2f ||∞ for solutions to the Stein equation

−x · ∇f + Tr(τ∇2f) = g −
∫
gdµ
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for arbitrary 1-Lipschitz data g. While a slightly stronger version of Assumption (H3) could be

used to prove bounds on ||∇f ||∞, the techniques used here would not help to bound ||∇2f ||∞.

So using Stein’s method would require some ingredients we do not have. Indeed, in general

proving second-order bounds is usually the most difficult step in implementing Stein’s method

via diffusion processes, and in the literature has mostly been done for measures satisfying cer-

tain algebraic properties, such as having an explicit orthogonal basis of polynomials that are

eigenvectors for an associated diffusion process (for example Gaussians or gamma distribu-

tions).

6.3 Proofs of stability bounds

A rough outline of the proofs is as follows: as a first step we will use Itô’s formula to show that

(H1) implies bounds on the measures µt and νt, for fixed t. Indeed, (H1) will allow us to replace

quantities like ‖τ(Xt)− τ(Yt)‖, which will arise through the use of Itô’s formula by something

more similar to ‖Xt− Yt‖. We will then use (H2) to transfer those estimate to the measure ν as

well.

After establishing that µt and νt are close, (H3) will be used to establish the same for µ and ν.

We first prove this in the easier case of globally Lipschitz coefficients encompassed by

Theorem 6.3.

6.3.1 Lipschitz coefficients - proof of Theorem 6.3

Proof of Theorem 6.3. By Itô’s formula, we have

d‖Xt−Yt‖2 = 2〈Xt−Yt, a(Xt)−b(Yt)〉dt+
√

8(Xt−Yt)(
√
σ(Xt)−

√
τ(Yt))dBt+‖

√
σ(Xt)−

√
τ(Yt)‖2dt.

So,

d

dt
E
[
‖Xt − Yt‖2

]
≤ E

[
‖Xt − Yt‖2

]
+ E

[
‖a(Xt)− b(Yt)‖2

]
+ E

[
‖√σ(Xt)−

√
τ(Yt)‖2

]
.

We have

E
[
‖a(Xt)− b(Yt)‖2

]
≤ 2E

[
‖a(Xt)− a(Yt)‖2

]
+ 2E

[
‖a(Yt)− b(Yt)‖2

]
≤ 2L2E

[
‖Xt − Yt‖2

]
+ 2‖a− b‖2

L2(νs)
,
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and

E
[
‖√σ(Xt)−

√
τ(Yt)‖2

]
≤ 2E

[
‖√σ(Xt)−

√
σ(Yt)‖2

]
+ 2E

[
‖√σ(Yt)−

√
τ(Yt)‖2

]
≤ 2L2E

[
‖Xt − Yt‖2

]
+ 2‖√σ −√τ‖2

L2(νs)
.

Combine the above displays to obtain,

d

dt
E
[
‖Xt − Yt‖2

]
≤ (1 + 4L2)E

[
‖Xt − Yt‖2

]
+ 2‖a− b‖2

L2(νs)
+ 2‖√σ −√τ‖2

L2(νs)
.

We choose µ0 = ν0 = ν so that νs = ν for all s ≥ 0, and denote r = 2‖a− b‖2
L2(ν) + 2‖√σ −

√
τ‖2

L2(ν). To boundW2
2 (ν, µ), we consider the differential equation

f ′(t) = (1 + 4L2)f(t) + r, with initial condition f(0) = 0.

Its unique solution is given by f(t) = r e
(4L2+1)t−1

4L2+1
. Thus, by Gronwall’s inequality

W2
2 (ν, µt) =W2

2 (νt, µt) ≤ E
[
‖Xt − Yt‖2

]
≤ r

e(4L2+1)t − 1

4L2 + 1
.

By Assumption (H3) we also know that

W2(µt, µ) ≤ CHe
−κ·tW2(ν, µ).

Thus,

W2(ν, µ) ≤ W2(ν, µt) +W2(µt, µ) ≤
√
r
e(4L2+1)t − 1

4L2 + 1
+ CHe

−κ·tW2(ν, µ),

or equivalently when t is large enough

W2(ν, µ) ≤
√

r

4L2 + 1

√
e(4L2+1)t − 1

1− e−κ·tCH
≤
√

r

4L2 + 1

e(2L2+1)t

1− e−κ·tCH
.

We now take t =
ln
(

1+ 2κ
4L2+1

)
+ln(CH)

κ
to get

W2(ν, µ) ≤
√

r

4L2 + 1

(
4L2 + 1

2κ
+ 1

)(
1 +

2κ

4L2 + 1

) 4L2+1
2κ

C
4L2+1

2κ
H

≤ 10C
4L2+1

2κ
H

√
r

(
L

κ
+ 1

)
.

To finish the proof it is enough to observe that r ≤ 2β2.
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6.3.2 Proof of Theorem 6.1

To prove Theorem 6.1, we will first show that, under suitable assumptions, for a given t > 0, the

measure µt cannot be too different than νt. Following [87] we define the logarithmic transport

distance, which serves as a natural measure of distance between µt and νt:

Dδ(µ, ν) := inf
π

∫
ln

(
1 +
|x− y|2
δ2

)
dπ,

where δ > 0 and the infimum is taken over all couplings of µ and ν, i.e. Dδ is a transport cost

(but not a distance, and the cost is concave, not convex).

We have the following connection between Dδ and W̃2
2,R, which is essentially the same

as [215, Lemma 5]. The proof of this lemma may be found in Section 6.5.

Lemma 6.7. For any R, δ, ε > 0, we have

W̃2
2,R(µ, ν) ≤ δ2 exp

(Dδ(µ, ν)

ε

)
+Rε+R

Dδ(µ, ν)

ln
(
1 + R2

δ2

) .
Remark 6.8. We can define W̃1,R in the same way, and a similar proof would also show that

W̃1,R(µ, ν) ≤ δ exp

(Dδ(µ, ν)

ε

)
+Rε+R

Dδ(µ, ν)

ln
(
1 + R

δ2

) ,
which motivates Remark 6.2.

Observe that if δ < R, then by choosing ε = Dδ(µ,ν)

ln(1+R
δ )

in the above lemma, we obtain

W̃2
2,R(µ, ν) ≤ 2R

(
δ +

Dδ(µ, ν)

ln
(
1 + R

δ

)) . (6.8)

Moreover, if both µ and ν have tame tails then it can be shown that for R large enough,

W2
2 (µ, ν) ' W̃2

2,R(ν, µ).

This is made rigorous in Lemma 6.18, in Section 6.5. For the logarithmic transport distance,

we will prove:

Lemma 6.9. Suppose that (H1) and (H2) hold and that X0 = Y0 almost surely with Y0 ∼ ν.

Then, for any t, δ > 0,

Dδ(µt, νt) ≤ 2t

(
10 ‖dν/dµ‖Lp(µ) ‖g‖2

L2q(µ) +
1

δ
‖a− b‖L1(ν) +

2

δ2
‖√σ −√τ‖2

L2(ν)

)
.

where q is such that 1
q

+ 1
p

= 1.
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Proof of Theorem 6.1. To ease the notation we will denote

α = 20 ‖dν/dµ‖Lp(µ) ‖g‖2
L2q(µ), β = 2‖a− b‖L1(ν) + 2‖√σ −√τ‖L2(ν).

We choose δ = β in Lemma 6.9 and obtain:

Dδ(µt, νt) ≤ (α + 1) t.

Now, combine the above estimate with (6.8) to get

W̃2
2,R(µt, νt) ≤ 2R

β +
(α + 1)

ln
(

1 + R
β

)t
 ≤ 2R

(α + 1)

ln
(

1 + R
β

)(t+R). (6.9)

To see the second inequality note that β ≤ R ln(1 + R
β

)−1. With Assumption (H3), we have

W̃2,R(µt, µ) ≤ W2(µt, µ) ≤ CHe
−tκW2(ν, µ) ≤ CHe

−tκ

(√∫
|x|2dµ+

∫
|x|2dν

)
.

Observe as well that since ν is an invariant measure,

W̃2,R(νt, ν) = 0.

We thus get,

W̃2,R(νt, ν) + W̃2,R(µt, µ) ≤ CHe
−tκ
√
m2

2(µ) +m2
2(ν).

Take

t0 :=
1

κ
ln

(√
m2

2(µ) +m2
2(ν) ln

(
1 +

R

β

))
,

for which,

W̃2,R(νt0 , ν) + W̃2,R(µt0 , µ) ≤ CH√
ln
(

1 + R
β

) ,
and, by using (6.9),

W̃2,R(µt0 , νt0) ≤
√√√√ 2R(α + 1)

ln
(

1 + R
β

)(t0 +R).
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To conclude the proof, we use the triangle inequality,

W̃2,R(µ, ν) ≤ W̃2,R(νt0 , ν) + W̃2,R(µt0 , µ) + W̃2(µt0 , νt0)

≤ CH√
ln
(

1 + R
β

) +

√√√√ 2R(α + 1)

ln
(

1 + R
β

)(t0 +R)

≤ 1√
ln
(

1 + R
β

)
(
CH +

√
2R(α + 1)

κ
ln

(
(m2

2(µ) +m2
2(ν)) ln

(
1 +

R

β

))
+ κR

)
.

Proof of Lemma 6.9

In this section our goal is to bound the logarithmic distance between Xt and Yt and thus prove

Lemma 6.9. Towards this, we let Zt = Xt − Yt. A straightforward application of Itô’s formula

gives the following result, whose proof may be found in [167, Section 4.1].

Lemma 6.10. Suppose that (X0, Y0) ∼ π are coupled in the optimal way for way Dδ. That is,

Eπ
[
ln
(

1 + ‖X0−Y0‖
δ2

)]
= Dδ(µ0, ν0). Then,

Dδ(µt, νt) ≤ Dδ(µ0, ν0) + 2

∫ t

0

E
[〈Zs, a(Xs)− b(Ys)〉

|Zs|2 + δ2

]
ds

+ 2

∫ t

0

E
[ ||√σ(Xs)−

√
τ(Ys)||2

|Zs|2 + δ2

]
ds.

With the above inequality we may then prove.

Lemma 6.11. Let t ≥ 0. Then,

Dδ(µt, νt) ≤ Dδ(µ0, ν0)+2

t∫
0

(
5
(
‖g‖2

L2(µs)
+ ‖g‖2

L2(νs)

)
+

1

δ
‖a− b‖L1(νs) +

2

δ2
‖√σ −√τ‖2

L2(νs)

)
ds.

Proof. We have

E
[〈Zs, a(Xs)− b(Ys)〉

|Zs|2 + δ2

]
≤ E

[
|a(Xs)− b(Ys)|√
|Zs|2 + δ2

]

≤ E
[
|a(Xs)− a(Ys)|√
|Zs|2 + δ2

]
+ E

[
|a(Ys)− b(Ys)|√
|Zs|2 + δ2

]
.

164



Using Assumption (H1), we get

E

[
|a(Xs)− a(Ys)|√
|Zs|2 + δ2

]
≤ E [g(Xs) + g(Ys)] = ‖g‖L1(µs) + ‖g‖L1(νs).

We also have,

E

[
|a(Ys)− b(Ys)|√
|Zs|2 + δ2

]
≤ 1

δ
‖a− b‖L1(νs)

.

So,

E
[〈Zs, a(Xs)− b(Ys)〉

|Zs|2 + δ2

]
≤ ‖g‖L1(µs) + ‖g‖L1(νs) +

1

δ
‖a− b‖L1(νs)

.

Similar calculations yield,

E
[ ||√σ(Xs)−

√
τ(Ys)||2

|Zs|2 + δ2

]
≤ 4‖g‖2

L2(µs)
+ 4‖g‖2

L2(νs)
+

2

δ2

∥∥√σ −√τ∥∥2

L2(νs)
.

As it is fine to assume ‖g‖2
L2(ρ) ≥ ‖g‖L1(ρ) ≥ 1 for any probability measure ρwe consider, since

we assumed for convenience that g ≥ 1, we now plug the above displays into Lemma 6.10.

Lemma 6.9 is now a consequence of the previous lemma.

Proof of Lemma 6.9. We start from Lemma 6.11. Since µ0 = ν0 = ν, and ν is the invariant

measure of the evolution equation for (Yt), we have

Dδ(µt, νt) ≤ 2

t∫
0

(
5
(
‖g‖2

L2(µs)
+ ‖g‖2

L2(ν)

)
+

1

δ
‖a− b‖L1(ν) +

2

δ2
‖√σ −√τ‖2

L2(ν)

)
ds.

(6.10)

Let q =
(

1− 1
p

)−1

. By Hölder’s inequality,

‖g‖2
L2(ν) ≤ ‖g‖2

L2q(µ)

∥∥∥∥dνdµ
∥∥∥∥
Lp(µ)

.

Also,

‖g‖2
L2(µs)

≤ ‖g‖2
L2q(µ)

∥∥∥∥dµsdµ

∥∥∥∥
Lp(µ)

≤ ‖g‖2
L2q(µ)

∥∥∥∥dνdµ
∥∥∥∥
Lp(µ)

,

where in the second inequality we have used that
∥∥∥dµsdµ ∥∥∥

Lp(µ)
is monotonic decreasing in s. We
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plug the above displays into (6.10), to obtain

Dδ(µt, νt) ≤ 2t

(
10 ‖dν/dµ‖Lp(µ) ‖g‖2

L2q(µ) +
1

δ
‖a− b‖L1(ν) +

2

δ2
‖√σ −√τ‖2

L2(ν)

)
.

which concludes the proof.

6.4 Proofs of the applications to Stein kernels

In this section we fix a measure µ on Rd, with Stein kernel τµ, constructed as in (6.7). For

now, we make the assumption that τµ is positive definite and uniformly bounded from below.

In the sequel, when we say that a measure is isotropic we mean that it is centered and that its

covariance matrix is the identity. To apply our result, we must first construct an Itô diffusion

process with µ as its unique invariant measure. Define the process Xt to satisfy the following

SDE:

dXt = −Xtdt+
√

2τµ(Xt)dBt. (6.11)

Lemma 6.12. µ is the unique invariant measure of the process Xt.

Proof. Let L be the infinitesimal generator of of (Xt). That is, for a twice differentiable test

function,

Lf(x) = 〈−x,∇f(x)〉+ 〈τµ(x),∇2 f(x)〉HS.

From the definition of the Stein kernel (6.5), we have

Eµ [Lf(x)] = 0,

for any such test function. We conclude that µ is the invariant measure of the process. Unique-

ness follows, since τµ is uniformly bounded from below ( [38]).

Before proving Theorem 6.6 we collect several facts concerning this process.

6.4.1 Lusin-Lipschitz Property for moment maps

We would now like to claim that the kernel τµ exhibits Lipschitz-like properties as in Assump-

tion (H1). For this to hold we restrict our attention to a more regular class of measures. Hence-

forth, we assume that µ = e−V (x)dx is an isotropic log-concave measure whose support equals

Rd and that there exists a constant α > 0, such that

αId ≤ ∇2V ≤ 1

α
Id. (6.12)
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In some sense, this assumption can be viewed as restricting ourselves to measures that are not

too far from a Gaussian distribution. Under this assumption the main result of this section is

that Stein kernels satisfy the Lusin-Lipschitz property that we need in order to apply Theorem

6.1. That is:

Lemma 6.13. Let µ be an isotropic log-concave measure on Rd satisfying (6.12) and let τµ be

its Stein kernel constructed from the moment map. Then, there exists a function g : Rd → R
such that for almost every x, y ∈ Rd:∥∥∥∥√τµ(x)−

√
τµ(y)

∥∥∥∥ ≤ (g(x) + g(y))‖x− y‖,

and,

‖g‖L2(µ) ≤ Cd3/2α−1,

where C > 0 is a universal constant. Moreover, there exists a constant c such that if µ is

radially symmetric and has full support then we also have for d > c

‖g‖L4(µ) < Cd7/4α−8.

In the sequel we will use the following notation, for v ∈ Rd, ∂vϕ is the directional derivative

of ϕ along v. Repeated derivations will be denoted as ∂2
uvϕ, ∂

3
uvwϕ, etc. If ei, for i = 1, . . . , d,

is a standard unit vector, we will abbreviate ∂iϕ = ∂eiϕ. Finally, ∇ϕ−1 is the inverse map of

∇ϕ.

Recall that τµ = ∇2ϕ(∇ϕ−1), where ∇ϕ pushes the measure e−ϕdx to µ. Thus, keeping in

mind Proposition 6.4, our first objective is to show ∂3
ijkϕ ∈ W 1,2(µ), for every i, j, k = 1, . . . , d.

This will be a consequence of the following result:

Proposition 6.14 (Third-order regularity bounds on moment maps). Assume that µ is isotropic

and that∇2V ≥ αId. Then, for i, j = 1, ..., d and j 6= i,

1.
∫
|∇∂2

iiϕ|2e−ϕdx ≤ Cα−1.

2.
∫
|∇∂2

ijϕ|2e−ϕdx ≤ C(d+ α−1).

Here C is a dimension-free constant, independent of µ.

Note that under the isotropy condition, necessarily α ≤ 1. These bounds build up on the

following estimates :

Proposition 6.15. Assume that µ = e−V (x)dx is log-concave and isotropic and ϕ is its moment

map.

1. For any direction e ∈ Sd−1 we have∫
(∂2
eeϕ)pe−ϕdx ≤ 8pp2p
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2.
∫
〈(∇2ϕ)−1∇∂2

eeϕ,∇∂2
eeϕ〉e−ϕdx ≤ 32

√∫
〈x, e〉4dµ ≤ C, with C a dimension-free

constant, that does not depend on µ.

3. If µ has a convex support and∇2 V ≥ αId with α > 0, then∇2 ϕ ≤ α−1Id.

4. If µ has full support and∇2 V ≤ βId with β > 0 then ∇2 ϕ ≥ β−1Id.

The first part was proved in [151] (see [112, Proposition 3.2] for the precise statement). The

second part is an immediate consequence of [155, eq (55)]. The third part was proved in [151].

The last part is part of the proof of [155, Theorem 3.4]

Proof of Proposition 6.14. The first part is an immediate consequence of items 2 and 3 of

Proposition 6.15. For the second part, with several successive integrations by parts, we have,∫
(∂3
ijkϕ)2e−ϕdx = −

∫
(∂4
iijkϕ)(∂2

jkϕ)e−ϕdx+

∫
(∂3
ijkϕ)(∂2

jkϕ)(∂iϕ)e−ϕdx

=

∫
(∂3
iikϕ)(∂3

jjkϕ)e−ϕdx−
∫

(∂3
iikϕ)(∂2

jkϕ)(∂jϕ)e−ϕdx

+

∫
(∂3
ijkϕ)(∂2

jkϕ)(∂iϕ)e−ϕdx

≤ 1

2

∫
(∂3
ijkϕ)2e−ϕdx+

∫
(∂3
iikϕ)2e−ϕdx+

1

2

∫
(∂3
jjkϕ)2e−ϕdx

+
1

2

∫
(∂2
jkϕ)4e−ϕdx+

1

4

∫
((∂iϕ)4 + (∂jϕ)4e−ϕdx. (6.13)

Moreover, since∇2ϕ is positive-definite, we have |∂2
jkϕ| ≤ (∂2

jjϕ+ ∂2
kkϕ)/2, and therefore

∑
k

∫
(∂2
jkϕ)4e−ϕdx ≤ 1

8

∑
k

∫
(∂2
jjϕ+ ∂2

kkϕ)4e−ϕdx

≤ Cd. (6.14)

Summing (6.13) over k implies the result, via the moment bounds for isotropic log-concave

distributions and the 2nd order bounds on ϕ.

We will also need the following result about radially symmetric functions.

Proposition 6.16. Suppose that (6.12) holds and that µ = e−V (x)dx is radially symmetric and

has full support. Then, there exists an absolute constant c > 0, such that, for any i, j, k =

1, . . . , d, if d > c: ∫
|∂3
ijkϕ|4e−ϕdx ≤ Cα−30d4.

for some absolute constant C > 0.
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Proof. Note that ϕ satisfies the Monge-Ampère equation

e−ϕ = e−V (∇ϕ) det
(
∇2ϕ

)
,

and that it can be verified that if V is a radial function then so is ϕ. Let i = 1, . . . , d, by taking

the logarithm and differentiating the above equation we get:

∂iϕ = 〈∇V (∇ϕ),∇∂iϕ〉 − Tr
(
∇2∂iϕ

(
∇2ϕ

)−1
)
.

By Proposition 6.15, αId ≤ ∇2ϕ ≤ 1
α

Id. Hence,

Tr
((
∇2ϕ

)−1∇2∂iϕ
)
≤ |∂iϕ|+ |〈∇V (∇ϕ),∇∂iϕ〉| ≤ |∂iϕ|+ α−1

√
d‖∇V (∇ϕ)‖, (6.15)

where the second inequality used Cauchy-Schwartz along with ‖∇∂iϕ‖ ≤
√
d‖∇2ϕ‖op. The

proof will now be conducted in three steps:

1. We will bound Tr
(

(∇2ϕ)
−1∇2∂iϕ

)
in terms of Tr (∇2∂iϕ) =

d∑
j=1

∂3
jjiϕ.

2. Using (6.15), we’ll show that
∫ (

d∑
j=1

∂3
jjiϕ

)4

e−ϕdx cannot be large.

3. Finally, we will use the previous step to bound
∫ (

∂3
kjiϕ

)4
e−ϕdx.

Step 1: We now wish to understand Tr
(

(∇2ϕ)
−1∇2∂iϕ

)
. Write ϕ(x) = f(‖x‖2), so that,

∇2ϕ(x) = 2f ′(‖x‖2)Id + 4f ′′(‖x‖2)xxT . (6.16)

The bounds on∇2ϕ imply the following inequalities, which we shall freely use below:

α ≤ 2f ′(‖x‖), 2f ′(‖x‖) + 4f ′′(‖x‖2)‖x‖2 ≤ α−1,

and ∣∣4f ′′(‖x‖2)‖x‖2
∣∣ ≤ α−1.

By the Sherman-Morrison formula,

(
∇2ϕ

)−1
(x) =

1

2f ′(‖x‖2)

(
Id −

4f ′′(‖x‖2)

2f ′(‖x‖2) + 4f ′′(‖x‖2)‖x‖2
xxT

)
.
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So,

Tr
((
∇2ϕ

)−1∇2∂iϕ
)

=
1

2f ′(‖x‖2)

(
d∑
j=1

∂3
jjiϕ−

4f ′′(‖x‖2)

2f ′(‖x‖2) + 4f ′′(‖x‖2)‖x‖2
∂3
xxei

ϕ

)
.

(6.17)

A calculation shows

∂3
jjiϕ(x) = 4xi(2x

2
jf
′′′(‖x‖2) + f ′′(‖x‖2) + 2δijf

′′(‖x‖2)),

and
d∑
j=1

∂3
jjiϕ(x) = 4xi(2‖x‖2f ′′′(‖x‖2) + (d+ 2)f ′′(‖x‖2)).

Also,

∂3
xxei

ϕ = 4xi
(
2‖x‖4f ′′′(‖x‖2) + 3‖x‖2f ′′(‖x‖2)

)
.

Thus, if D(x) := 1− 4f ′′(‖x‖2)‖x‖2
2f ′(‖x‖2)+4f ′′(‖x‖2)‖x‖2 = 2f ′(‖x‖2)

2f ′(‖x‖2)+4f ′′(‖x‖2)‖x‖2 ,

d∑
j=1

∂3
jjiϕ−

4f ′′(‖x‖2)

2f ′(‖x‖2) + 4f ′′(‖x‖2)‖x‖2
∂3
xxei

ϕ

=

(
1− 4f ′′(‖x‖2)‖x‖2

2f ′(‖x‖2) + 4f ′′(‖x‖2)‖x‖2

)
8xi‖x‖2f ′′′(‖x‖2)

+

(
d+ 2− 3

4f ′′(‖x‖2)‖x‖2

2f ′(‖x‖2) + 4f ′′(‖x‖2)‖x‖2

)
4xif

′′(‖x‖2)

= D(x)8xi‖x‖2f ′′′(‖x‖2) + (d− 1 + 3D(x)) 4xif
′′(‖x‖2)

= D(x)
d∑
j=1

∂3
jjiϕ+ (d− 1 + 3D(x)−D(x)(d+ 2)) 4xif

′′(‖x‖2)

≥ D(x)
d∑
j=1

∂3
jjiϕ− Cdα−3 |xi|

‖x‖2

= D(x)Tr
(
∇2∂iϕ

)
− Cdα−3 |xi|

‖x‖2
.

In the inequality, we have used (6.16) along with the bounds 4|f ′′(‖x‖2)| ≤ α−1

‖x‖2 , and α2 ≤
D(x) ≤ α−2. (6.17) then implies:

Tr
((
∇2ϕ

)−1∇2∂iϕ
)
≥ D(x)

2f ′(‖x‖2)
Tr
(
∇2∂iϕ

)
− Cdα−3

2f ′(‖x‖2)

1

‖x‖ .
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Step 2: We now integrate with respect to the moment measure, so the estimate from the pre-

vious step, along with the bounds α2 ≤ D(x), α ≤ 2f ′′(‖x‖) ≤ α−1, and (6.15) give:∫
Tr
(
∇2∂iϕ

)4
e−ϕdx ≤Cα−12

(∫
|∂iϕ|4e−ϕdx

+ α−4d2

∫
‖∇V (∇ϕ)‖4e−ϕdx+ d4α−16

∫
1

‖x‖4
e−ϕdx

)
. (6.18)

Let us look at each term on the right hand side. By a change of variable∫
|∂iϕ|4e−ϕdx =

∫
‖xi‖4dµ ≤ C,

since higher moments of coordinates of isotropic log-concave measures are controlled.

For the second term, since∇ϕ is a transport map, we get that∫
‖∇V (∇ϕ)‖4e−ϕdx =

∫
‖∇V ‖4dµ.

Recalling that αId ≤ ∇2V ≤ 1
α

Id, we apply the Poincaré inequality for µ, and since |∇|∇V |2| =
2|∇2V∇V | ≤ 2α−1|∇V |,∫

‖∇V (∇ϕ)‖4e−ϕdx ≤
(∫
|∇V |2dµ

)2

+ 4α−3

(∫
|∇V |2dµ

)
.

By integration by parts,
∫
|∇V |2dµ =

∫
∆V dµ ≤ dα−1, and hence∫

‖∇V (∇ϕ)‖4e−ϕdx ≤ 5d2α−4.

For the third integral, we may use the fact that when d ≥ c, a reverse Hölder inequality holds for

negative moments, and may be applied to radially symmetric log-concave measures (see [204,

Theorem 1.4]). According to the inequality,∫
1

‖x‖4
e−ϕdx ≤ C

(∫
‖x‖2e−ϕdx

)−2

≤ Cα−2.

We now plug the previous three displays into (6.18) to conclude,

∫ ( d∑
j=1

∂3
jjiϕ

)4

e−ϕdx =

∫
Tr
(
∇2∂iϕ

)4
e−ϕdx ≤ Cα−30d4. (6.19)
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Step 3: Now, let i, j, k = 1, . . . , d be distinct. We have,∫ (
∂3
ijkϕ

)4
e−ϕdx = 84

∫ (
xixjxkf

′′′(‖x‖2)
)4
e−ϕdx

≤ 84

24

(∫
x4
i

(
x2
jf
′′′(‖x‖2)

)4
e−ϕdx+

∫
x4
i

(
x2
kf
′′′(‖x‖2)

)4
e−ϕdx

)
.

≤ 84

23

∫
x4
i

(
‖x‖2f ′′′(‖x‖2)

)4
e−ϕdx

≤ 84

∫
x4
i

(
‖x‖2f ′′′(‖x‖2) + (d+ 2)f ′′(‖x‖2)

)4
e−ϕdx

+ 85

∫
x4
i

(
(d+ 2)f ′′(‖x‖2)

)4
e−ϕdx

= 84

∫ ( d∑
j=1

∂3
jjiϕ(x)

)4

e−ϕdx+

∫ (
(d+ 2)xif

′′(‖x‖2)
)4
e−ϕdx


≤
(
Cα−30d4 + (d+ 2)4

∫ (
xif

′′(‖x‖2)
)4
e−ϕdx

)
,

where we have used (6.19) in the last inequality. For the remaining integral term, denote x∼i =

(x1, ..., xi−1, xi+1, ..., xd). Then∫ (
xif

′′(‖x‖2)
)4
e−ϕdx =

∫
1

‖x∼i‖4

(
xi‖x∼i‖ · f ′′(‖x‖2)

)4
e−ϕdx

≤
∫

1

‖x∼i‖4

∑
j 6=i

x4
ix

4
jf
′′(‖x‖2)4e−ϕdx

=

∫
1

‖x∼i‖4

∑
j 6=i

(
∂2
ijϕ
)4
e−ϕdx

≤ dα−4

∫
1

‖x∼i‖4
e−ϕdx ≤ Cdα−6.

In the last inequality we again used the reverse Hölder inequality for negative moments of

radially symmetric log-concave measures. Plugging this estimate into the previous display

finishes the proof, when |{i, j, k}| = 3. The other cases can be proven similarly.

We are now in a position to prove Lemma 6.13.

Proof of Lemma 6.13. Since ∇ϕ−1 transports µ to e−ϕdx, from Proposition 6.14 we conclude

that τµ ∈ W 1,2(µ) and that ‖Dτµ‖L2(µ) ≤ Cd3/2α−1/2, where D stands for the total derivative

operator. Here, we have used the identity ‖D3ϕ‖L2(e−ϕdx) = ‖Dτµ‖L2(µ), which follows from

(6.7). Thus, by Proposition 6.4, there exists a function g̃ for which,

‖τµ(x)− τµ(y)‖ ≤ (g̃(x) + g̃(y))‖x− y‖,
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and ‖g̃‖L2(µ) ≤ C d3/2

α1/2 . Proposition 6.15 along with (6.12) shows

√
αId ≤

√
τµ.

Hence, ∥∥∥∥√τµ(x)−
√
τµ(y)

∥∥∥∥ ≤ 1√
α
‖τµ(x)− τµ(y)‖.

Take now g := 1√
α
g̃ to conclude the proof. If µ is radially symmetric, then Proposition 6.16

shows ‖Dτµ‖L4(µ) ≤ Cd
7
4α−

15
2 and the proof continues in a similar way.

6.4.2 Exponential convergence to equilibrium

We now show that the process (6.11) satisfies the exponential convergence to equilibrium prop-

erty we require, as long as (6.12) is satisfied.

Lemma 6.17. Assume that µ = e−V dx with α−1Id ≥ ∇2V ≥ αId. Then the diffusion process

(6.11) satisfies Assumption H3 with κ = 1/2 and CH = α−2.

Proof. As demonstrated in [154], the diffusion process ∇ϕ−1(Xt), where (Xt) solves (6.11),

satisfies the Bakry-Emery curvature dimension condition CD(1/2,∞) when viewed as the

canonical diffusion process on the weighted manifold (Rd, (∇2ϕ)−1, e−ϕ). Therefore it is

a contraction in Wasserstein distance, with respect to the Riemannian metric dϕ with tensor

(∇2ϕ)−1 [241]. That is

W2,dϕ(µt ◦ ∇ϕ, e−ϕ) ≤ e−t/2W2,dϕ(µ0 ◦ ∇ϕ, e−ϕ).

From the bounds on∇2ϕ given by Proposition 6.15, we have

α−1|x− y|2 ≥ dϕ(x, y)2 ≥ α|x− y|2,

and the result follows, using again the two-sided Lipschitz bounds on∇ϕ.

6.4.3 Stability for Stein kernels

Proof of Theorem 6.6. We consider the two processes

dXt = −Xt +
√

2τ(Xt)dBt,

dYt = −Yt +
√

2σ(Yt)dBt.
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By Lemma 6.12, µ and ν are the respective invariant measures of Xt and Yt. By Lemma 6.17,

Assumption H3 is satisfied with κ = 1
2
, CH = α−2. By Lemma 6.13, Assumption H1 is satisfied

with ‖g‖2
L2(µ) ≤ Cd3α−2.

Set p =∞, q = 1 and R > 0. Plugging the above estimates to Theorem 6.1, we get

W̃2
2,R(ν, µ) ≤ Cα−6d3R ‖dν/dµ‖∞

ln
(

ln
(

1 + R
β

))
+ ln (M) +R

ln
(

1 + R
β

) .

ν and µ are log-concave and in-particular have sub-exponential tails. We apply Lemma 6.18,

from the appendix, to obtain a constant C ′ > 0 such that

W2(ν, µ) ≤ 2W̃2,C′M2 ln(M)2(ν, µ),

which proves the first part of the theorem. For the second part, if µ is radially symmetric, then

we take p = q = 2, and by Lemma 6.13, H1 is now satisfied with ‖g‖2
L4(µ) ≤ Cd

7
2α−16 and the

proof continues in the same way. The last part of the theorem is an immediate consequence of

Theorem 6.3.

6.5 Transport inequalities for the truncated Wasserstein dis-
tance

Proof of Lemma 6.7. We let π denote the optimal coupling for Dδ and (X, Y ) ∼ π. Define the

sets

D =
{

(x, y) ∈ R2d : ‖x− y‖2 ≤ R
}
,

D̃ =

{
(x, y) ∈ D : ln

(
1 +
‖x− y‖2

δ2

)
≤ Dδ(µ, ν)

ε

}
.

We now write

E
[
min

(
‖X − Y ‖2, R

)]
= E

[
‖X − Y ‖2

1D̃

]
+ E

[
‖X − Y ‖2

1D\D̃

]
+R · E [1R2d \D] ,

and bound each term separately. Observe that for any α ∈ R,

ln

(
1 +

x2

δ2

)
≤ α ⇐⇒ |x| ≤ δ

√
eα − 1.

Thus,

E
[
‖X − Y ‖2

1D̃

]
≤ δ2 exp

(Dδ(µ, ν)

ε

)
.
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Next, by Markov’s inequality

P
(

ln

(
1 +
‖X − Y ‖2

δ2

)
≥ Dδ(µ, ν)

ε

)
≤ ε

Dδ(µ, ν)
E
[
ln

(
1 +
‖X − Y ‖2

δ2

)]
= ε.

So,

E
[
‖X − Y ‖2

1D\D̃

]
≤ RE

[
1R2d\D̃

]
≤ Rε.

Finally, a second application of Markov’s inequality gives

RE [1R2d \D] ≤ R · P
(
‖X − Y ‖2 ≥ R

)
= R · P

(
ln

(
1 +
‖X − Y ‖2

δ2

)
≥ ln

(
1 +

R2

δ2

))
≤ R

Dδ(µ, ν)

ln
(
1 + R2

δ2

) .

Lemma 6.18. Let X ∼ µ, Y ∼ ν be two centered random vectors in Rd. Assume that both X

and Y are sub-exponential with parameter M , in the sense that for every k ≥ 2,

E
[
‖X‖k

] 1
k

k
,
E
[
‖Y ‖k

] 1
k

k
≤M. (6.20)

Then

W2
2 (µ, ν) ≤ 2W̃2

2,CM2 ln(M)2(µ, ν),

for a universal constant C > 0.

Proof. Fix R > 0 and let π denote the optimal coupling for W̃2,R and (X, Y ) ∼ π. Then,

E
[
‖X − Y ‖2

]
= E

[
‖X − Y ‖2

1‖X−Y ‖2≤R
]

+ E
[
‖X − Y ‖2

1‖X−Y ‖2>R
]

≤ W̃ 2
2,R(µ, ν) +

√
E [‖X − Y ‖4]P (‖X − Y ‖2 > R).

X − Y also has a sub-exponential law with parameter C ′M , where C ′ > 0 is a constant. Thus,

by (6.20), for some other constant C,√
E [‖X − Y ‖4] ≤ CME

[
‖X − Y ‖2

]
,

and
√
P (‖X − Y ‖2 > R) ≤ e−

√
R

CM . Take R = (CM ln(2CM))2, to get.

E
[
‖X − Y ‖2

]
≤ W̃2

2,R(µ, ν) +
1

2
E
[
‖X − Y ‖2

]
,

which implies,

W2
2 (µ, ν) ≤ E

[
‖X − Y ‖2

]
≤ 2W̃2

2,R(µ, ν).
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“Thou art god, I am god. All that groks is god.”

- Michael Valentine Smith

PART III

APPLICATIONS IN DATA SCIENCE
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7
Methods in Non-Convex Optimization -

Gradient Flow Trapping

7.1 Introduction

Let f : Rd → R be a smooth function (i.e., the map x 7→ ∇f(x) is 1-Lipschitz, and f is

possibly non-convex). We aim to find an ε-approximate stationary point, i.e., a point x ∈ Rd
such that ‖∇f(x)‖2 ≤ ε. It is an elementary exercise to verify that for smooth and bounded

functions, gradient descent finds such a point inO(1/ε2) steps, see e.g., [192]. Moreover, it was

recently shown in [66] that this result is optimal, in the sense that any procedure with only black-

box access to f (e.g., to its value and gradient) must, in the worst case, make Ω(1/ε2) queries

before finding an ε-approximate stationary point. This situation is akin to the non-smooth con-

vex case, where the same result (optimality of gradient descent at complexity 1/ε2) holds true

for finding an ε-approximate optimal point (i.e., such that f(x)−miny∈Rd f(y) ≤ ε), [190,192].

There is an important footnote to both of these results (convex and non-convex), namely

that optimality only holds in arbitrarily high dimension (specifically the hard instance in both

cases require d = Ω(1/ε2)). It is well-known that in the convex case this large dimension re-

quirement is actually necessary, for the cutting plane type strategies (e.g., center of gravity) can

find ε-approximate optimal points on compact domains inO(d log(1/ε)) queries. It is natural to
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ask: Is there some analogue to cutting planes for non-convex optimization?1 In dimension

1 it is easy to see that one can indeed do a binary search to find an approximate stationary point

of a smooth non-convex function on an interval. The first non-trivial case is thus dimension

2, which is the focus of this chapter (although we also obtain new results in high dimensions,

and in particular our approach does achieve O(poly(d) log(1/ε)) parallel depth, see below for

details).

This problem, of finding an approximate stationary point of a smooth function on a com-

pact domain of R2, was studied in 1993 by Stephen A. Vavasis in [237]. From an algorithmic

perspective, his main observation is that in finite dimensional spaces one can speed up gra-

dient descent by using a warm start. Specifically, observe that gradient descent only needs

O(∆/ε2) queries when starting from a ∆-approximate optimal point. Leveraging smoothness

(see e.g., Lemma 7.5 below), observe that the best point on a
√

∆-net of the domain will be

∆-approximate optimal. Thus starting gradient descent from the best point on
√

∆-net one

obtains the complexity Od

(
∆
ε2

+ 1
∆d/2

)
in Rd. Optimizing over ∆, one obtains a Od

((
1
ε

) 2d
d+2

)
complexity. In particular for d = 2 this yields a O(1/ε) query strategy. In addition to this algo-

rithmic advance, Vavasis also proved a lower bound of Ω(1/
√
ε) for deterministic algorithms.

In this chapter we close the gap up to a logarithmic term. Our main contribution is a new

strategy loosely inspired by cutting planes, which we call gradient flow trapping (GFT), with

complexity O
(√

log(1/ε)
ε

)
. We also extend Vavasis lower bound to randomized algorithms, by

connecting the problem with unpredictable walks in probability theory [31].

Although we focus on d = 2 for the description and analysis of GFT in this chapter, one can

in fact easily generalize to higher dimensions. Before stating our results there, we first make

precise the notion of approximate stationary points, and we also introduce the parallel query

model.

7.1.1 Approximate stationary point

We focus on the constraint set [0, 1]d, although this is not necessary and we make this choice

mainly for ease of exposition. Let us fix a differentiable function f : [0, 1]d → R such that

∀x, y ∈ [0, 1]d, ‖∇f(x)−∇f(y)‖2 ≤ ‖x− y‖2. Our goal is to find a point x ∈ [0, 1]d such that

for any ε′ > ε, there exists a neighborhood N ⊂ [0, 1]d of x such that for any y ∈ N ,

f(x) ≤ f(y) + ε′ · ‖x− y‖2 .

1We note that a different perspective on this question from the one developed in this chapter was investigated
in [136], where the author asks whether one can adapt actual cutting planes to non-convex settings. In particular
[136] shows that one can improve upon gradient descent and obtain a complexity O(poly(d)/ε4/3) with a cutting
plane method, under a higher order smoothness assumption (namely third order instead of first order here).
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We say that such an x is an ε-stationary point (its existence is guaranteed by the extreme value

theorem). In particular if x ∈ (0, 1)d this means that ‖∇f(x)‖2 ≤ ε. More generally, for

x = (x1, . . . , xd) ∈ [0, 1]d (possibly on the boundary), let us define the projected gradient at x,

g(x) = (g1(x), . . . , gd(x)) by:

gi(x) =


max

(
0, df

dxi
(x)
)

if xi = 0 ,

df
dxi

(x) if xi ∈ (0, 1) ,

min
(
0, df

dxi
(x)
)

if xi = 1 .

It is standard to show (see also [237]) that x is an ε-stationary point of f if and only if ‖g(x)‖2 ≤
ε.

7.1.2 Parallel query model

In the classical black-box model, the algorithm can sequentially query an oracle at points x ∈
[0, 1]d and obtain the value2 of the function f(x). An extension of this model, first considered

in [191], is as follows: instead of submitting queries one by one sequentially, the algorithm

can submit any number of queries in parallel. One can then count the depth, defined as the

number of rounds of interaction with the oracle, and the total work, defined as the total number

of queries.

It seems that the parallel complexity of finding stationary points has not been studied before.

As far as we know, the only low-depth algorithm (say depth polylogarithmic in 1/ε) is the naive

grid search: simply query all the points on an ε-net of [0, 1]d (it is guaranteed that one point in

such a net is an ε-stationary point). This strategy has depth 1, and total work O(1/εd). As we

explain next, the high-dimensional version of GFT has depth O(poly(d) log(1/ε)), and its total

work improves at least quadratically upon grid search.

7.1.3 Complexity bounds for GFT

In this chapter we give a complete proof of the following near-optimal result in dimension 2:

Theorem 7.1. Let d = 2. The gradient flow trapping algorithm (see Section 7.5) finds a 4ε-

stationary point with less than 105

√
log(1/ε)

ε
queries to the value of f .

It turns out that there is nothing inherently two-dimensional about GFT. At a very high level,

one can think of GFT as making hyperplane cuts, just like standard cutting planes methods in

convex optimization. While in the convex case those hyperplane cuts are simply obtained by

gradients, here we obtain them by querying a Õ(
√
ε)-net on a carefully selected small set of

2Technically we consider here the zeroth order oracle model. It is clear that one can obtain a first order oracle
model from it, at the expense of a multiplicative dimension blow-up in the complexity. In the context of this chapter
an extra factor d is small, and thus we do not dwell on the distinction between zeroth order and first order.
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hyperplanes. Note also that the meaning of a “cut” is much more delicate than for traditional

cutting planes methods (here we use those cuts to “trap” gradient flows). All of these ideas are

more easily expressed in dimension 2, but generalizing them to higher dimensions presents no

new difficulties (besides heavier notation). In Section 7.5.4 we prove the following result:

Theorem 7.2. The high-dimensional version of GFT finds an ε-stationary point in depthO(d2 log(d/ε))

and in total work dO(d) ·
(

log(1/ε)
ε

) d−1
2

.

In particular we see that the three-dimensional version of GFT has complexity O
(

log(1/ε)
ε

)
.

This improves upon the previous state of the art complexity O(1/ε1.2) [237]. However, on the

contrary to the two-dimensional case, we believe that here GFT is suboptimal. As we discuss

in Section 7.6.3, in dimension 3 we conjecture the lower bound Ω(1/ε0.6).

In dimensions d ≥ 4, the total work given by Theorem 7.2 is worse than the total work

O
((

1
ε

) 2d
d+2

)
of Vavasis’ algorithm. On the other hand, the depth of Vavasis’ algorithm is of the

same order as its total work, in stark contrast with GFT which maintains a logarithmic depth

even in higher dimensions. Among algorithms with polylogarithmic depth, the total work given

in Theorem 7.2 is more than a quadratic improvement (in fixed dimension) over the previous

state of the art (namely naive grid search).

We also propose a simplified version of GFT, which we call Cut and Flow (CF), that always

improve upon Vavasis’ algorithm (in fact in dimension d it attains the same rate as Vavasis in

dimension d− 1). In particular CF attains the same rate as GFT for d = 3, and improves upon

on it for any d > 3. It is however a serial algorithm and does not enjoy the parallel properties

of GFT.

Theorem 7.3. Fix d ∈ N. The cut and flow algorithm (see Section 7.4) finds an ε-stationary

point with less than 5d3 log
(
d
ε

) (
1
ε

) 2d−2
d+1 queries to the values of f and ∇f .

Organization: The rest of the chapter (besides Section 7.6 and Section 7.7) is dedicated to

motivating, describing and analyzing our gradient flow trapping strategy in dimension 2 (from

now on we fix d = 2, unless specified otherwise). In Section 7.2 we make a basic “local to

global” observation about gradient flow which forms the basis of our “trapping” strategy. Sec-

tion 7.3 is an informal section on how one could potentially use this local to global phenomenon

to design an algorithm, and we outline some of the difficulties one has to overcome. As a warm-

up, to demonstrate the use of our ideas, we introduce the ”cut and flow” algorithm in Section

7.4 and prove Theorem 7.3. In Section 7.5 we formally describe our new strategy and analyze

its complexity. In Section 7.6 we extend Vavasis’ Ω(1/
√
ε) lower bound to randomized algo-

rithms. Finally we conclude the chapter in Section 7.7 by introducing several open problems

related to higher dimensions.
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7.2 A local to global phenomenon for gradient flow

We begin with some definitions. For an axis-aligned hyperrectangle R = [a1, b1]×· · ·× [ad, bd]

in Rd, we denote its volume and diameter by

diam(R) :=

√√√√ d∑
i=1

(bi − ai)2 and vol(R) :=
d∏
i=1

(bi − ai)

We further define the aspect ratio of R as maxi(bi−ai)
mini(bi−ai) . The 2d faces of R are the subsets of the

form:

[a1, b1]× · · · × {ai} × · · · × [ad, bd] and [a1, b1]× · · · × {bi} × · · · × [ad, bd],

for i = 1, . . . , d. The boundary of R, which we denote ∂R is the union of all faces.

If E ⊂ [0, 1]d is a (d − 1)-dimensional hyperrectangle and δ > 0, we say that N ⊂ E is a

δ-net of E, if for any x ∈ E, there exists some y ∈ N such that ‖x− y‖2 ≤ δ. We will always

assume implicitly that if N ⊂ E is a δ-net, then the vertices of E are elements of N .

We denote f ∗δ (E) for the largest value one can obtain by minimizing f on a δ-net of E.

Formally,

f ∗δ (E) = sup
N

inf
x∈N

f(x),

where the supremum is taken over all δ-nets of E. We say that a pair (E, x) of segment/point

in [0, 1]d (where E is not a subset of a face of [0, 1]d) satisfies the property Pc for some c ≥ 0 if

there exists δ > 0 such that

f(x) < f ∗δ (E)− δ2

8
+ c · dist(x,E) ,

where

dist(x,E) := inf
y∈E
‖x− y‖2.

When E is a subset of ∂[0, 1]d we always say that (E, x) satisfies Pc (for any c ≥ 0 and any

x ∈ [0, 1]d).

For an axis-aligned hyperrectangle R and x ∈ R, we say that (R, x) satisfies Pc if, for any of

the 2d faces E of R, one has that (E, x) satisfies Pc. We refer to x as the pivot for R.

Our main observation is as follows:

Lemma 7.4. Let R be a hyperrectangle such that (R, x) satisfies Pc for some x ∈ R and c ≥ 0.

Then R must contain a c-stationary point (in fact the gradient flow emanating from x must visit

a c-stationary point before exiting R).
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This lemma will be our basic tool to develop cutting plane-like strategies for non-convex

optimization. From “local” information (values on a net of the boundary of R) one deduces a

“global” property (existence of approximate stationary point in R).

Proof. Let us assume by contradiction thatR does not contain a c-stationary point, and consider

the unit-speed gradient flow (x(t))t≥0 constrained to stay in [0, 1]d. That is, x(t) is the piecewise

differentiable function defined by x(0) = x and d
dt
x(t) = − g(x(t))

‖g(x(t))‖2 , where g is the projected

gradient defined in the previous section. Since there is no stationary point in R, it must be that

the gradient flow exitsR. Let us denote T = inf{t ≥ 0 : x(t) 6∈ R}, andE a face ofR such that

x(T ) ∈ E. Remark that E cannot be part of a face of [0, 1]d. Furthermore, for any 0 ≤ t ≤ T ,

one has

f(x(t))− f(x(0)) =

∫ t

0

g(x(s)) · d
ds
x(s)ds ≤ −c · t ≤ −c · ‖x(t)− x(0)‖2 .

where the first inequality uses that R does not contain a c-stationary point. In particular, this

implies f(x(T ))− f(x) ≤ −c · dist(x,E), so that,

min
y∈E

f(y) ≤ f(x)− c · dist(x,E) .

Lemma 7.5 below shows that for any δ > 0 one has f ∗δ (E) ≤ miny∈E f(y) + δ2

8
, and thus

together with the above display it shows that (E, x) does not satisfy Pc, which is a contradiction.

Lemma 7.5. For any (d− 1)-dimensional hyperrectangle E ⊂ [0, 1]2 and δ > 0 one has:

f ∗δ (E) ≤ min
y∈E

f(y) +
δ2

8
.

Proof. Let x ∈ E be such that f(x) = minz∈E f(z). If x is a vertex of E, then we are done

since we require the endpoints of E to be in the δ-nets. Otherwise x is in the relative interior of

E, and thus one has∇f(x) · (y − x) = 0 for any y ∈ E. In particular by smoothness one has:

f(y) = f(x) +

∫ 1

0

∇f(x+ t(y − x)) · (y − x)dt

≤ f(x) +

∫ 1

0

t · ‖y − x‖2
2dt = f(x) +

1

2
‖y − x‖2

2 .

Moreover for any δ-net ofE there exists y such that ‖y−x‖2 ≤ δ
2
, and thus f(y) ≤ f(x)+δ2/8,

which concludes the proof.

Our algorithmic approach to finding stationary points will be to somehow shrink the domain

of consideration over time. At first it can be slightly unclear how the newly created boundaries
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interact with the definition of stationary points. To dispell any mystery, it might be useful to

keep in mind the following observation, which states that if (R, x) satisfies Pc, then x cannot be

on a boundary of R which was not part of the original boundary of [0, 1]d.

Lemma 7.6. Let R be a rectangle such that (R, x) satisfies Pc for some x ∈ R and c ≥ 0. Then

x /∈ ∂R \ ∂[0, 1]d.

Proof. Let E be a face of R which is not a subset of ∂[0, 1]d. Then by definition of Pc, and by

invoking Lemma 7.5, one has:

f(x) < f ∗δ (E)− δ2

8
+ c · dist(x,E) ≤ min

y∈E
f(y) + c · dist(x,E) .

In particular if x ∈ E then dist(x,E) = 0, and thus f(x) < miny∈E f(y) which is a contradic-

tion.

7.3 From Lemma 7.4 to an algorithm

Lemma 7.4 naturally leads to the following algorithmic idea (for sake of simplicity in this

discussion we replace squares by circles): given some current candidate point x in some well-

conditioned domain (e.g., such that the domain contains and is contained in balls centered at

x and of comparable sizes), query a
√
ε-net on the circle C = {y : ‖y − x‖2 = 1}, and de-

note y for the best point found on this net. If one finds a significant enough improvement, say

f(y) < f(x)− 3
4
ε, then this is great news, as it means that one obtained a per query improve-

ment of Θ(ε−3/2) (to be compared with gradient descent which only yields an improvement of

Θ(ε−2)). On the other hand if no such improvement is found, then the gradient flow from x

must visit an ε-stationary point inside C.3 In other words one can now hope to restrict the do-

main of consideration to a region inside C, which is a constant fraction smaller than the original

domain. Figure 7.1 illustrates the two possibilities.

Optimistically this strategy would give a Õ(B/ε3/2) rate for B-bounded smooth functions

(since at any given scale one could make at most O(B/ε3/2) improvement steps). In particular

together with the warm start this would tentatively yield a Õ(1/ε3/4) rate, thus already improv-

ing the state-of-the-art O(1/ε) by Vavasis.

3In “essence” (C, x) satisfies Pε, this is only slightly informal since we defined Pε for rectangles and C is
a circle. In particular we chose the improvement 3

4ε instead of the larger 7
8ε (which is enough to obtain Pc) to

account for an extra term due to polygonal approximation of the circle. We encourage the reader to ignore this
irrelevant technicality.
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x
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x

z

Figure 7.1: The red curve illustrates the gradient flow emanating from x. On the left, the flow does not
visit an ε-stationary point and y has a significantly smaller function value than x. Otherwise, as in the
right, we shrink the domain.

There is however a difficulty in the induction part of the argument. Indeed, what we know

after a shrinking step is that the current point x satisfies f(x) ≤ f(y) + ε for any y ∈ C. Now

we would like to query a net on {y : ‖y−x‖2 = 1/2}. Say that after such querying we find that

we can’t shrink, namely we found some point z with f(z) < f(x) − ε
2

+ δ2

8
, and in particular

f(z) < f(y) + 1
2
ε+ δ2

8
for any y ∈ C. Could the gradient flow from z escape the original circle

C without visiting an ε-stationary point? Unfortunately the answer is yes. Indeed (because

of the discretization error δ2/8) one cannot rule out that there would be a point y ∈ C with

f(y) < f(z) − ε
2
, and since C is only at distance 1/2 from z, such a point could be attained

from z with a gradient flow without ε-stationary points. Of course one could say that instead of

satisfying Pε we now only satisfy Pε+δ2/4, and try to control the increase of the approximation

guarantee, but such an approach would not improve upon the 1/ε2 of gradient descent (simply

because we could additively worsen the approximation guarantee too many times).

The core part of the above argument will remain in our full algorithm (querying a
√
ε-net

to shrink the domain). However it is made more difficult by the discretization error as we just

saw. We also note that this discretization issue does not appear in discrete spaces, which is

one reason why discrete spaces are much easier than continuous spaces for local optimization

problems.

Technically we observe that the whole issue of discretization comes from the fact that when

we update the center, we move closer to the boundary, which we “pay” in the term dist(x,E)

in Pc, and we cannot “afford” it because of the discretization error term that we suffer when

we update. Thus this issue would disappear if in our induction hypothesis we had P0 for the

boundary. Our strategy will work in two steps: first we give a querying strategy for a domain

with P0 that ensures that one can always shrink with Pε guaranteed for the boundary, and

secondly we give a method to essentially turn a Pε boundary into P0.
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7.4 Cut and flow

We now fix d ∈ N and consider [0, 1]d. We say that a pair (H, x) is a domain if H ⊂ [0, 1]d

is an axis-aligned hyperrectangle and x ∈ H . In this section, we further require that if H =

[a1, b1]× · · · × [ad, bd], then for every 1 ≤ i, j ≤ d, bi−ai
bj−aj ∈ {

1
2
, 1, 2}. In other words, all edges

of H either have the same length or differ by a factor of 2. The Cut and Flow (CF) algorithm is

performed with two alternating steps, bisection and descent (See Figure 7.2 for an illustration

of the two steps, when d = 2).

1. At the bisection step, we have a domain (H, x) satisfying P0. Let k ∈ [d] be any coordi-

nate such that bk − ak is maximal and set the midpoint, mk = ak+bk
2

. We now bisect H

into two equal parts,

H1 = [a1, b1]× · · · × [ak,mk]× · · · × [ad, bd],

H2 = [a1, b1]× · · · × [mk, bk]× · · · × [ad, bd],

so that H1 ∪ H2 = H and E = H1 ∩ H2 is a (d − 1)-dimensional hyperrectangle. Set

N ⊂ E to be a δ-net and,

xN = arg min
y∈N

f(y).

Here δ is some small parameter to determined later. To choose a new pivot x̄ for the

domain we compare f(xN) and f(x). If f(x) ≤ f(xN), set x̄ = x otherwise x̄ = xN .

We end the step with the two pairs (H1, x̄), (H2, x̄).

2. The descent step takes the two pairs produced by the bisection step and returns a new do-

main (H̃, x̃) satisfying P0 such that H̃ ∈ {H1, H2}. This is done be performing gradient

descent iterations:

x̄i = x̄i−1 −∇f(x̄i−1), (7.1)

where x̄0 = x̄. Set T = δ2

ε2
, and x̃ = x̄T . Then, H̃ = H1 if x̃ ∈ H1 and H̃ = H2

otherwise.

The CF algorithm starts with the domain (H0, x0) where H0 = [0, 1]d and x0 is arbitrary. Given

(Ht, xt) the algorithm runs a bisection step, followed by a descent step and sets (Ht+1, xt+1) =

(H̃, x̃), as described above. The algorithm stops when the diameter of Ht is smaller than ε.
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Figure 7.2: The left image shows the bisection of H into two equal parts H1 and H2. The right image
shows the trajectory of gradient descent, starting from x̄ and terminating at x̃, inside H̃ .

Let us first prove that at the end of the descent step, the obtained domain satisfies P0.

Lemma 7.7. Suppose that (H, x) satisfies P0, then either the descent step finds an ε-stationary

point or (H̃, x̃) satisfies P0 as well.

Proof. Let us first estimate the value of f(x̃). Observe that, by smoothness of f , if we consider

the gradient descent iterates (7.1), we have

f(x̄i−1)− f(x̄i) ≥ ‖∇f(x̄i−1)‖2
2 −

1

2
‖∇f(x̄i−1)‖2

2 =
1

2
‖∇f(x̄i−1)‖2

2 ≥
ε2

2
,

where the last inequality holds as long as x̄i−1 is not an ε-stationary point (see also Section 3.2

in [55]). It follows that,

f(x̃) = f(x̄T ) ≤ f(x̄)− T

2
ε2 ≤ f(x)− T

2
ε2.

Now, let E ′ ⊂ ∂H̃ be a face such that E ′ 6= H1 ∩ H2. Then, E ′ ⊂ ∂H and by assumption,

(E ′, x) satisfied P0. Since f(x̃) ≤ f(x), it is clear that (E ′, x̃) satisfies P0 as well.

We are left with showing that, if E = H1 ∩ H2, then (E, x̃) satisfies P0. Indeed, from the

construction, and using T = δ2

ε2
, we have,

f(x̃) ≤ f(x̄)− T

2
ε2 ≤ f ∗δ (E)− T

2
ε2 ≤ f ∗δ (E)− δ2

8
.

Let us now prove Theorem 7.3.
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Proof of Theorem 7.3. Observe that diam(H0) =
√
d and that after performing d consecu-

tive bisection steps, necessarily, every face of Ht was bisected into two equal parts. Hence,

diam(Ht+d) ≤ 1
2
diam(Ht), and,

diam(Ht) ≤
(

1

2

)b t
d
c√

d.

Choose T = dd log2

(√
d
ε

)
e, so that diam(HT ) ≤ ε. We claim that xT is an ε-stationary point.

Indeed, by iterating Lemma 7.7 we know that the pair (HT , xT ) satisfies P0. By Lemma 7.4,

there exists x∗ ∈ HT which is a stationary point and ‖x∗ − xT‖2 ≤ ε.

All that remains is to calculate the number of queries made by the algorithm. At the bisection

step we query a δ-net N , over a (d− 1)-dimensional hyperrectangle, contained in the unit cube.

Elementary computations show that we can take,

|N | ≤ (2d)d−1

δd−1
.

Combined with the number of queries made by the descent step, we see that the total number

of queries made by the algorithm is,⌈
d log2

(√
d

ε

)⌉(
(2d)d−1

δd−1
+
δ2

ε2

)
.

We now optimize and choose δ = ε
2
d+1 2d. Substituting into the above equations shows that the

number of queries is smaller than

5d3 log2

(
d

ε

)
ε−

2d−2
d+1 .

7.5 Gradient flow trapping

In this section we focus on the case d = 2. We say that a pair (R, x) is a domain if R is an

axis-aligned rectangle with aspect ratio bounded by 3, and x ∈ R (note that the definition of

a domain is slightly different than in the previous section). The gradient flow trapping (GFT)

algorithm is decomposed into two subroutines:

1. The first algorithm, which we call the parallel trap, takes as input a domain (R, x) satis-

fying P0. It returns a domain (R̃, x̃) satisfying Pε and such that vol(R̃) ≤ 0.95 vol(R).

The cost of this step is at most 2
√

diam(R)
ε

queries.
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2. The second algorithm, which we call edge fixing, takes as input a domain (R, x) satisfying

Pε′ (for some ε′ ∈ [ε, 2ε]) and such that for k ∈ {0, 1, 2, 3} edges E of R one also has

P0 for (E, x). It returns a domain (R̃, x̃) such that either (i) it satisfies Pε′ and for k + 1

edges it also satisfies P0, or (ii) it satisfies P(1+ 1
500 log(1/ε))ε′

and furthermore vol(R̃) ≤

0.95 vol(R). The cost of this step is at most 90
√

diam(R) log(1/ε)
ε

queries.

Equipped with these subroutines, GFT proceeds as follows. Initialize (R0, x0) = ([0, 1]2, (0.5, 0.5)),

ε0 = ε, and k0 = 4. For t ≥ 0:

• if kt = 4, call parallel trap on (Rt, xt), and update kt+1 = 0, (Rt+1, xt+1) = (R̃t, x̃t), and

εt+1 = ε.

• Otherwise call edge fixing, and update (Rt+1, xt+1) = (R̃t, x̃t). If Rt+1 = Rt then set

kt+1 = kt + 1 and εt+1 = εt, and otherwise set kt+1 = 0 and εt+1 =
(

1 + 1
500 log(1/ε)

)
εt.

We terminate once the diameter of Rt is smaller than 2ε.

Next we give the complexity analysis of GFT assuming the claimed properties of the sub-

routines parallel trap and edge fixing in 1. and 2. above. We then proceed to describe in details

the subroutines, and prove that they satisfy the claimed properties.

7.5.1 Complexity analysis of GFT

The following three lemmas give a proof of Theorem 7.1.

Lemma 7.8. GFT stops after at most 200 log(1/ε) steps.

Proof. First note that at least one out of five steps of GFT reduces the volume of the domain by

0.95 (since one can do at most four steps in a row of edge fixing without volume decrease). Thus

on average the volume decrease per step is at least 0.99, i.e., vol(RT ) ≤ 0.99T . In particular

since RT has aspect ratio smaller than 3, it is easy to verify diam(RT ) ≤ 2
√

vol(RT ) ≤
2 × 0.99T/2. Thus for any T ≥ log100/99(1/ε2), one must have diam(RT ) ≤ 2ε. Thus we see

that GFT performs at most log100/99(1/ε2) ≤ 200 log(1/ε) steps.

Lemma 7.9. When GFT stops, its pivot is a 4ε-stationary point.

Proof. First note that εT ≤
(

1 + 1
500 log(1/ε)

)T
ε, thus after T ≤ 200 log(1/ε) steps we know

that (RT , xT ) satisfies at least P2ε. In particular by Lemma 7.4, RT must contain a 2ε-stationary

point, and since the diameter is less than 2ε, it must be (by smoothness) that xT is a 4ε-stationary

point.

Lemma 7.10. GFT makes at most 105

√
log(1/ε)

ε
queries before it stops.

190



Proof. As we saw in the proof of Lemma 7.8, one has diam(Rt) ≤ 2 × 0.99t/2. Furthermore

the tth step requires at most 90
√

diam(Rt) log(1/ε)
ε

queries. Thus the total number of queries is

bounded by:

90

√
2 log(1/ε)

ε

∞∑
t=0

0.99t/4 ≤ 105

√
log(1/ε)

ε
.

7.5.2 A parallel trap

Let (R, x) be a domain. We define two segments E and F in R as follows. Assume that R is

a translation of [0, s] × [0, r]. For sake of notation assume that in fact R = [0, s] × [0, r] with

s ∈ [r, 3r] and x1 ≥ r/2, where x = (x1, x2) (in practice one always ensures this situation with

a simple change of variables). Now we define E = {r/6} × [0, r] and F = {r/3} × [0, r] (See

Figure 7.3).

r

s

r
6

r
6

E F

x

Figure 7.3: The parallel trap

The parallel trap algorithm queries a
√
rε-net on both E and F (which cost at most 2 r√

rε
=

2
√

r
ε
). Denote x̄ to be the best point (in terms of f value) found on the union of those nets. That

is, denoting N ⊂ F ∪ E for the queried
√
rε-net, then

x̄ = arg min
y∈N

f(y).

One has the following possibilities (see Figure 7.4 for an illustration):

• If f(x) ≤ f(x̄) then we set x̃ = x and R̃ = [r/3, s]× [0, r].

• Otherwise we set x̃ = x̄. If x̄ ∈ F we set R̃ = [r/6, s] × [0, r], and if x̄ ∈ E we set

R̃ = [0, r/3]× [0, r].
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The above construction is justified by the following lemma (a trivial consequence of the defini-

tions), and it proves in particular the properties of parallel trap described in 1. at the beginning

of Section 7.5.

Lemma 7.11. The rectangle R̃ has aspect ratio smaller than 3, and it satisfies vol(R̃) ≤
0.95 vol(R). Furthermore if (R, x) satisfies P0, then (R̃, x̃) satisfies Pε.

Proof. The first sentence is trivial to verify. For the second sentence, first note that for any

edge E of R one has P0 for (E, x̃) since by assumption one has P0 for (E, x) and furthermore

f(x̃) ≤ f(x). Next observe that R̃ has at most one new edge Ẽ with respect to R, and this

edge is at distance at least r/6 from x̃, thus in particular one has ε · dist(x̃, Ẽ) − δ2/8 > 0 for

δ =
√
rε. Furthermore by definition f(x̃) ≤ f ∗δ (Ẽ), and thus f(x̃) < f ∗δ (Ẽ)− δ2

8
+ε·dist(x̃, Ẽ),

or in other words (Ẽ, x̃) satisfies Pε.

E F

x

x̃

E F

x̃

E F

xx̃

Figure 7.4: The three possible cases for (R̃, x̃). R̃ is marked in red.

7.5.3 Edge fixing

Let (R, x) be a domain satisfying Pε′ for some ε′ ∈ [ε, 2ε], and with some edges possibly also

satisfying P0. Denote E for the closest edge to x that does not satisfy P0, and let r = dist(x, E).

We will consider three4 candidate smaller rectangles, R1, R2 and R3, as well as three candidate

pivots (in addition to x) x1 ∈ ∂R1, x2 ∈ ∂R2 and x3 ∈ ∂R3. The rectangles are defined by

Ri = R ∩ {y : ‖xi−1 − y‖∞ ≤ r
3
}, where we set x0 = x. The possible output (R̃, x̃) of

edge fixing will be either (Ri, xi−1) for some i ∈ {1, 2, 3}, or (R, x3) (see Figure 7.5 for a

demonstration of how to construct the rectangles).

To guarantee the properties described in 2. at the beginning of Section 7.5 we will prove

the following: if the output is (Ri, xi−1) for some i then all edges will satisfy P(1+ 1
500 log(1/ε))ε′

(Lemma 7.14 below) and the domain has shrunk (Lemma 7.12 below), and if the output is

(R, x3) then one more edge satisfies P0 compared to (R, x) while all edges still satisfy at least

Pε′ (Lemma 7.13 below).

Lemma 7.12. For any i ∈ {1, 2, 3} one has vol(Ri) ≤ 2
3
vol(R). Furthermore if the aspect

ratio of R is smaller than 3, then so is the aspect ratio of Ri.
4We need three candidates to ensure that the domain will shrink.
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Figure 7.5: Edge fixing: the rectangles R1, R2 and R3 are marked in red, from left to right.

Proof. Let us denote `1(R) for the length of R in the axis of E (the edge whose distance to x

defines r), and `2(R) for the length in the orthogonal direction (and similarly define `1(Ri) and

`2(Ri)).

Since Ri ⊂ R one has `1(Ri) ≤ `1(R). Furthermore `2(Ri) ≤ 2
3
r and `2(R) ≥ r, so that

`2(Ri) ≤ 2
3
`2(R). This implies that vol(Ri) ≤ 2

3
vol(R).

For the second statement observe that `1(R) ≥ `2(R)
3
≥ r

3
(the first inequality is by assump-

tion on the aspect ratio of R, the second inequality is by definition of r). Given this estimate,

the construction of Ri implies that 1
3
r ≤ `2(Ri), `1(Ri) ≤ 2

3
r, which concludes the fact that Ri

has aspect ratio smaller than 2.

Queries and choice of output. The edge fixing algorithm queries a
√

ε′r
500 log(1/ε)

-net on ∂Ri

for all i ∈ {1, 2, 3} (thus a total of 4
√

500r log(1/ε)
ε′

≤ 90
√

r log(1/ε)
ε

queries), and we define xi to

be the best point found on each respective net.

If for all i ∈ {1, 2, 3} one has

f(xi) ≤ f(xi−1)− ε′r

3
, (7.2)

then we set (R̃, x̃) = (R, x3). Otherwise denote i∗ ∈ {1, 2, 3} for the smallest number which

violates (7.2), and set (R̃, x̃) = (Ri∗ , xi∗−1).

Lemma 7.13. If (R̃, x̃) = (R, x3) then (E , x3) satisfies P0. Furthermore for any edge E of R,

if (E, x) satisfies P0 (respectively Pε′) then so does (E, x3).

Proof. Since (R̃, x̃) = (R, x3) it means that f(x3) ≤ f(x0) − ε′r. In particular since (E , x0)

satisfies Pε′ one has f(x0) < f ∗δ (E)− δ2

8
+ε′r, and thus now one has f(x3) < f ∗δ (E)− δ2

8
which

means that (E , x3) satisfies P0.

Let us now turn to some other edge E of R. Certainly if (E, x0) satisfies P0 then so does

(E, x3) since f(x3) ≤ f(x0). But, in fact, even Pε′ is preserved since by the triangle inequality
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(and ‖x3 − x0‖2 ≤ r) one has

f(x3)− ε′ · dist(x3, E) ≤ f(x3) + ε′r − ε′ · dist(x0, E) ≤ f(x0)− ε′ · dist(x0, E).

Lemma 7.14. If (R̃, x̃) = (Ri, xi−1) for some i ∈ {1, 2, 3}, then (R̃, x̃) satisfy P(1+ 1
500 log(1/ε))ε′

.

Proof. By construction, if (R̃, x̃) = (Ri, xi−1), then for any edge E of Ri one has f(xi−1) <

f ∗δ (E)+ ε′r
3

. Furthermore one has ε′r
3

= − ε′r
8×500 log(1/ε)

+
(

1 + 3
8×500 log(1/ε)

)
ε′r
3

, and thus one has

P(1+ 3
8×500 log(1/ε))ε′

for (E, xi−1) whenever dist(xi−1, E) = r
3
. Indeed, since δ =

√
ε′r

500 log(1/ε)
,

f(xi−1) < f ∗δ (E)− δ2

8
+

(
1 +

3

8× 500 log(1/ε)

)
ε′ · dist (xi−1, E) .

If dist(xi−1, E) < r
3

then by the triangle inequality, dist(x0, E) < r, and moreover E is also an

edge with respect to R. Thus from the definition of r, (E, x0) satisfies P0. Also by our choice

of xi−1, we know that f(xi−1) ≤ f(x0). Hence (E, xi−1) satisfies P0 as well.

7.5.4 Generalization to higher dimensions

As explained in the introduction, there is no reason to restrict GFT to [0, 1]2 and, in fact, the

algorithm may be readily adapted to higher-dimensional spaces, such as [0, 1]d, for some d > 2.

We now detail the necessary changes and derive the complexity announced in Theorem 7.2.

First, if F is an affine hyperplane, and x ∈ [0, 1]d, we define Pc for (F, x) in the obvious

way (i.e., same definition except that we consider a δ-net of F ). Similarly for (R, x), when R

is an axis-aligned hyperrectangle.

Gradient flow trapping in higher dimensions replaces every line by a hyperplane, and every

rectangle by a hyperrectangle. In particular at each step GFT maintains a domain (R, x), where

R is a hyperrectangle with aspect ratio bounded by 3, and x ∈ R. The two subroutines are

adapted as follows:

1. Parallel trap works exactly in the same way, except that the two lines E and F are re-

placed by two corresponding affine hyperplanes. In particular the query cost of this step

is now O

((
diam(R)

ε

) d−1
2

)
, and the volume shrinks by at least 0.95.

2. In edge fixing, we now have three hyperrectangles Ri, and we need to query nets on

their 2d faces. Thus the total cost of this step is O
(
d
(

diam(R) log(1/ε)
ε

) d−1
2

)
. Moreover,

suppose that domain does not shrink at the end of this step and the output is a domain

(R, x̃) for some other x̃ ∈ R. In this case we know that R has some face F , such that
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(F, x) did not satisfy P0, but (F, x̃) does satisfy P0. It follows that we can run edge fixing,

at most 2d times before the domain shrinks.

We can now analyze the complexity of the high-dimensional version of GFT:

Proof of Theorem 7.2. First observe that, if R is a hyperrectangle in [0, 1]d with aspect ratio

bounded by 3, then we have the following inequality,

diam(R) ≤ 3
√
d · vol(R)

1
d .

By repeating the same calculations done in Lemma 7.8 and the observation about parallel trap

and edge fixing made above, we see that the domain shrinks at least once in every 2d+ 1 steps,

so that at step T ,

vol(RT ) ≤ 0.95
T

2d+1 ,

and

diam(RT ) ≤ 3
√
d · 0.95

T
(2d+1)d .

Since the algorithm stops when diam(RT ) ≤ 2ε, we get

T = O

(
d2 log

(
d

ε

))
.

The total work done by the algorithm is evident now by considering the number of queries at

each step.

7.6 Lower bound for randomized algorithms

In this section, we show that any randomized algorithm must make at least Ω̃
(

1√
ε

)
queries in

order to find an ε-stationary point. This extends the lower bound in [237], which applied only

to deterministic algorithms. In particular, it shows that, up to logarithmic factors, adding ran-

domness cannot improve the algorithm described in the previous section.

For an algorithm A, a function f : [0, 1]2 → R and ε > 0 we denote by Q (A, f, ε) the

number of queries made by A, in order to find an ε-stationary point of f . Our goal is to bound

from below

Qrand(ε) := inf
A random

sup
f
EA [Q (A, f, ε)] ,

where the infimum is taken over all random algorithms and the supremum is taken over all

smooth functions, f . The expectation is with respect to the randomness ofA. By Yao’s minimax
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principle we have the equality

Qrand(ε) = sup
D

inf
A determinstic

Ef∼D [Q (A, f, ε)] .

Here, A is a deterministic algorithm and D is a distribution over smooth functions. The rest of

this section is devoted to proving the following theorem:

Theorem 7.15. Let h : N→ R be a decreasing function such that

∞∑
k=1

h(k)

k
<∞,

and set

Sh(n) :=
n∑
k=1

1

k · h(k)
. (7.3)

Then,

Qrand(ε) = Ω

 1
√
ε · Sh

(⌈
1√
ε

⌉)
 .

Remark that one may take h(k) := 1
log(k)2+1

in the theorem. In this case Sh(k) = O(log3(k)),

and Qrand(ε) = Ω
(

1
log3(1/ε)

√
ε

)
, which is the announced lower bound.

One of the main tools utilized in our proof is the construction introduced in [237]. We now

present the relevant details.

7.6.1 A reduction to monotone path functions

Let Gn = (Vn, En) stand for the n+ 1× n+ 1 grid graph. That is,

Vn = {0, . . . , n} × {0, . . . , n} and En = {(v, u) ∈ Vn × Vn : ‖v − u‖1 = 1}.

We say that a sequence of vertices, (v0, ..., vn) is a monotone path in Gn if v0 = (0, 0) and for

every 0 < i ≤ n, vi − vi−1 either equals (0, 1) or (1, 0). In other words, the path starts at the

origin and continues each step by either going right or up. If (v0, ..., vn) is a monotone path, we

associate to it a monotone path function P : Vn → R by

P (v) =

−‖v‖1 if v ∈ {v0, ..., vn}
‖v‖1 otherwise

.

By a slight abuse of notation, we will sometimes refer to the path function and the path itself as

the same entity. If i = 0, ..., n we write Pi for P−1(−i) and P [i] for the prefix (P0, P1, ..., Pi).
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If v ∈ Vn is such that P (v) > 0, we say that v does not lie on the path.

We denote the set of all monotone path functions on Gn by Fn. It is clear that if P ∈ Fn then

Pn is the only local minimum of P and hence the global minimum.

Informally, the main construction in [237] shows that for every P ∈ Fn there is a corre-

sponding smooth function P̂ : [0, 1]2 → R, which ’traces’ the path in P and preserves its

structure. In particular, finding an ε-stationary point of P̂ is not easier than finding the mini-

mum of P .

To formally state the result we fix ε > 0 and assume for simplicity that 1√
ε

is an integer. We

henceforth denote n(ε) := 1√
ε

and identify Vn(ε) with [0, 1]2 in the following way: if (i, j) =

v ∈ Vn(ε) we write square(v) for the square:

square(v) =

[
i

n(ε) + 1
,

i+ 1

n(ε) + 1

]
×
[

j

n(ε) + 1
,
j + 1

n(ε) + 1

]
.

If ϕ : [0, 1]2 → R, then supp(ϕ) denotes the closure of the set {x ∈ [0, 1]2 : ϕ(x) 6= 0}.

Lemma 7.16 (Section 3, [237]). Let P ∈ Fn(ε). Then there exists a function P̂ : [0, 1]2 → R
with the following properties:

1. P̂ is smooth.

2. P̂ = fP + `, where ` is a linear function, which does not depend on P , and

supp(fP ) ⊂
n⋃
i=0

square (Pi) .

3. If x ∈ [0, 1]2 is an ε-stationary point of P̂ then x ∈ square (Pn).

4. if P ′ ∈ Fn(ε) is another function and for some i = 0, ..., n, (P ′i−1, P
′
i , P

′
i+1) = (Pi−1, Pi, Pi+1).

Then

P̂ ′|square(Pi) = P̂ |square(Pi)

We now make precise of the fact that finding the minimum of P is as hard as finding an

ε-stationary point of P̂ . For this we define G(A, P ), the number of queries made by algorithm

A, in order to find the minimal value of the function P .

Lemma 7.17. For any algorithm A, which finds an ε-stationary point of smooth functions on

[0, 1]2, there exists an algorithm Ã such that

Q(A, P̂ , ε) ≥ 1

5
G(Ã, P ),

for any P ∈ Fn(ε).
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Proof. Given an algorithm A we explain how to construct Ã. Fix P ∈ Fn(ε). If A queries a

point x ∈ square (v) ⊂ [0, 1]2. Then Ã queries v and all of its neighbors. WhenA terminates it

has found an ε-stationary point. By Lemma 7.16, this point must lie in square (Pn). By query-

ing Pn and its neighbors, Ã will determine that Pn is a local minimum and hence the minimum

of P .

Since each vertex has at most 4 neighbors, it will now suffice to show that Ã can remain

consistent with A. We thus need to show that after querying the neighbors of v, Ã may deduce

the value of P̂ (x).

As we are only interested in the number of queries made by Ã, it is fine to assume that Ã
has access to the construction used in Lemma 7.16. Now, suppose that P (v) > 0 and v does not

lie on the path. In this case, by Lemma 7.16, P̂ (x) = `(x), which does not depend on P itself

and `(x) is known. Otherwise v = Pi for some i = 0, ..., n. So, after querying the neighbors of

v, Ã also knows Pi−1 and Pi+1. The lemma then tells us that P̂ |square(v) is uniquely determined

and, in particular, the value of P̂ (x) is known.

7.6.2 A lower bound for monotone path functions

Denote Dp(n) to be the set of all distributions supported on Fn. By Lemma 7.17,

Qrand(ε) ≥ sup
D∈Dp(n(ε))

inf
A determinstic

EP∼D
[
Q
(
A, P̂ , ε

)]
≥ 1

5
sup

D∈Dp(n(ε))

inf
A determinstic

EP∼D
[
G
(
Ã, P

)]
.

In [227], the authors present a family of random paths (Xδ)δ>0 ⊂ Dp(n). Using these random

paths it is shown that for every δ > 0,

Grand(n) := sup
D∈Dp(n)

inf
A determinstic

EP∼D [G (A, P )] = Ω(n1−δ).

This immediately implies,

Qrand(ε) = Ω

((
1√
ε

)1−δ
)
.

Their proof uses results from combinatorial number theory in order to construct a random path

which, roughly speaking, has unpredictable increments. This distribution is then used in con-

junction with a method developed by Aaronson ( [1]) in order to produce a lower bound.

We now present a simplified proof of the result, which also slightly improves the bound. We

simply observe that known results concerning unpredictable random walks, can be combined

with Aaronson’s method. Theorem 7.15 will then be a consequence of the following theorem:
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Theorem 7.18. Let the notations of Theorem 7.15 prevail. Then

Grand(n) = Ω

(
n

Sh(n)

)
.

The theorem of Aaronson, reformulated using our notations (see also [227, Lemma 2]), is

given below.

Theorem 7.19 (Theorem 5, [1]). Let w : Fn×Fn → R+ be a weight function with the following

properties:

• w(P, P ′) = w(P ′, P ).

• w(P, P ′) = 0, whenever Pn = P ′n.

Define

T (w,P ) :=
∑
Q∈Fn

w(P,Q),

and for v ∈ Vn
T (w,P, v) :=

∑
Q∈Fn:Q(v)6=P (v)

w(P,Q).

Then

Grand(n) = Ω

 min
P,P ′,v

PP (v)6=P ′(v),w(P,P ′)>0

max

(
T (w,P )

T (w,P, v)
,
T (w,P ′)

T (w,P ′, v)

) .

For P ∈ Fn, one should think about w as inducing a probability measure according to

w(P, ·). If Q is sampled according to this measure, then the quantity T (w,P,v)
T (w,P )

is the probability

that P (v) 6= Q(v). That is, either v ∈ P or v ∈ Q, but not both. The theorem then says that if

this probability is small, for at least one path in each pair (P, P ′) such that Pn 6= P ′n, then any

randomized algorithm must make as many queries as the reciprocal of the probability.

We now formalize this notion; For a random path X ∈ Dp(n), define the following weight

function:

wX(P, P ′) =


0 if Pn = P ′n

P(X = P ) ·
n−1∑
i=0

P(X = P ′|X[i] = P [i]) otherwise
.

Here wX(P, P ′) is proportional to the probability that X = P ′, conditional on agreeing with P

on the first i steps, where i is uniformly chosen between 0 and n− 1. Note that, for any i,

P (X = P ) ·P (X = P ′|X[i] = P [i])

= P(X[i] = P [i]) · P(X = P |X[i] = P [i]) · P(X = P ′|X[i] = P [i])

= P (X = P ′) · P (X = P |X[i] = P ′[i]) .
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Hence, wX(P, P ′) = wX(P ′, P ). We will use the following theorem from [131], which gener-

alizes the main result of [31].

Theorem 7.20 (Theorem 1.4, [131]). Let h be as in Theorem 7.15, Then there exists a random

pathXh ∈ Dp(n) and a constant ch > 0, such that for allm ≥ k, and for every (v0, v1..., vm−k),

sequence of vertices,

sup
‖u‖1=m

P
(
Xh
m = u|Xh

0 = v0, ..., X
h
m−k = vm−k

)
≤ ch
kf(k)

. (7.4)

For Xh as in the theorem abbreviate wh := wXh and recall Sh(n) :=
n∑
k=1

1
k·h(k)

. We now

prove the main quantitative estimates which apply to wh.

Lemma 7.21. For any P ∈ Fn,∑
Q∈Fn

wh(P,Q) ≥ P(Xh = P ) · (n− chSh(n)) .

Proof. We write

∑
Q∈Fn

wh(P,Q) = P(Xh = P )
∑

Q:Qn 6=Pn

n−1∑
i=0

P
(
Xh = Q|Xh[i] = P [i]

)
= P(Xh = P )

n−1∑
i=0

(
1−

∑
Q:Qn=Pn

P
(
Xh = Q|Xh[i] = P [i]

))

= P(Xh = P )

(
n−

n−1∑
i=0

∑
Q:Qn=Pn

P
(
Xh = Q|Xh[i] = P [i]

))
.

Using (7.4), we get∑
Q:Qn=Pn

P
(
Xh = Q|Xh[i] = P [i]

)
≤ P(Xh

n = Pn|Xh[i] = P [i]) ≤ ch
(n− i) · h(n− i) ,

and
n−1∑
i=0

∑
Q:Qn=Pn

P
(
Xh = Q|Xh[i] = P [i]

)
≤

n∑
k=1

ch
k · h(k)

= chSh(n).

Lemma 7.22. Let P ∈ Fn and v ∈ Vn such that ‖v‖1 = ` and P` 6= v. Then,∑
Q∈Fn
Q`=v

wh(P,Q) ≤ 2P(Xh = P )chSh(n).
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Proof.

∑
Q∈Fn
Q`=v

wh(P,Q) = P(Xh = P )
`−1∑
i=0

∑
Q:Qn 6=Pn
Q`=v

P
(
Xh = Q|Xh[i] = P [i]

)

≤ P(Xh = P )
`−1∑
i=0

∑
Q:Q`=v

P
(
Xh = Q|Xh[i] = P [i]

)
.

Observe that if Q` = v, then Q`+1 must equal v + (0, 1) or v + (1, 0). In particular, for i < `,

(7.4) shows∑
Q:Q`=v

P
(
Xh = Q|Xh[i] = P [i]

)
≤ P

(
Xh
`+1 = v + (0, 1) or Xh

`+1 = v + (1, 0)|Xh[i] = P [i]
)

≤ P
(
Xh
`+1 = v + (0, 1)|Xh[i] = P [i]

)
+ P

(
Xh
`+1 = v + (1, 0)|Xh[i] = P [i]

)
≤ 2ch

(`+ 1− i) · h(`+ 1− i) .

So,

`−1∑
i=0

∑
Q:Q`=v

P
(
Xh = Q|Xh[i] = P [i]

)
≤

`−1∑
i=0

2ch
(`+ 1− i) · h(`+ 1− i)

≤ 2chSh(n).

We are now in a position to prove Theorem 7.18.

Proof of Theorem 7.18. Let P ∈ Fn and let v ∈ Vn, with

‖v‖1 = ` and P` 6= v.

Note that P (v) = `. So, if Q ∈ Fn is such that Q(v) 6= P (v), then necessarily Q` = v. We now

set P ′ ∈ Fn, with P (v) 6= P ′(v). In this case, the previous two lemmas show

max

(
T (wh, P )

T (wh, P, v)
,
T (wh, P

′)

T (wh, P ′, v)

)

≥ T (wh, P )

T (wh, P, v)
=

∑
Q∈Fn

wh(P,Q)∑
Q∈Fn

Q(v)6=P (v)

wh(P,Q)
=

∑
Q∈Fn

wh(P,Q)∑
Q∈Fn
Q`=v

wh(P,Q)
≥ n− chSh(n)

2chSh(n)
.
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Since we are trying to establish a lower bound, we might as well assume that Sh(n) = o(n).

So, for n large enough
n− chSh(n)

2chSh(n)
≥ n

4chSh(n)
.

Plugging this estimate into Theorem 7.19 yields the desired result

7.6.3 Heuristic extension to higher dimensions

In this section we propose a heuristic approach to extend the lower bound to higher dimensions.

In the 2 dimensional case, the proof method of Section 7.6 consisted of two steps: first re-

duces the problem to the discrete setting of monotone paths in [n]2, and then analyze the query

complexity of finding the minimal point for such path functions. Thus, to extend the result we

should consider path functions on the d-dimensional grid, as well as a way to build smooth

functions on [0, 1]d from those paths.

The lower bound for finding minimal points of path functions in high-dimensional grids was

obtained in [253], where it was shown that, in the worst case, any randomized algorithm must

make Ω
(
n
d
2

)
queries in order to find the end point of a path defined over [n]d. Thus, if we can

find a discretization scheme, analogous to Lemma 7.16, in higher dimensions, we could obtain

a lower bound for finding ε-stationary points. What are the constraints on such a discretization?

First note that necessarily the construction of [253] must be based on paths of lengths

Ω
(
n
d
2

)
, for otherwise one could simply trace the path to find its endpoint. In particular, since

each cube has edge length 1
n

, an analogous construction to Lemma 7.16 will reach value smaller

than −ε · n d
2
−1 at the stationary point (i.e., the endpoint of the path). On the other hand, in at

least one of the neighboring cubes (which are at distance less than 1/n from the stationary

point), the background linear function should prevail, meaning that the function should reach a

positive value. Since around the stationary point the function is quadratic, we get the constraint:

−ε · n d
2
−1 +

(
1

n

)2

> 0⇔ n <

(
1

ε

) 2
d+2

.

In particular the lower bound Ω
(
n
d
2

)
now suggests that for finding stationary point one has the

complexity lower bound
(

1
ε

) d
d+2 .

7.7 Discussion

We introduced a near-optimal algorithm for finding ε-stationary points in dimension 2. Finding

a near-optimal algorithm in dimensions d ≥ 3 remains open. Specific challenges include:

1. Finding a strategy in dimension 3 which improves upon GFT’s Õ(1/ε) complexity.
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2. The heuristic extension of the lower bound in Section 7.6.3 suggests Ω

(
1

ε
d
d+2

)
as a com-

plexity lower bound for any dimension d (note in particular that the exponent tends to 1

as d tends to infinity). On the other hand, [66] proved that for d = Ω(1/ε2), one has the

complexity lower bound Ω(1/ε2). How do we reconcile these two results? Specifically

we raise the following question: Is there an algorithm with complexity Cd/ε for some

constant Cd which depends only on d? (Note that Cd as small as O(
√
d) would remain

consistent with [66].) Alternatively we might ask whether the [66] lower bound holds

for much smaller dimensions, e.g. when d = Θ(log(1/ε)), are we in the 1/ε regime as

suggested by the heuristic, or are we already in the high-dimensional 1/ε2 of [66]?

3. Especially intriguing is the limit of low-depth algorithms, say as defined by having depth

smaller than poly(d log(1/ε)). Currently this class of algorithms suffers from the curse of

dimensionality, as GFT’s total work degrades significantly when the dimension increases

(recall from Theorem 7.2 that it is Õ
(

1

ε
d−1

2

)
). Is this necessary? A much weaker question

is to simply show a separation between low-depth and high-depth algorithms. Namely

can one show a lower bound Ω(1/εc) with c > 2 for low-depth algorithms? We note that

lower bounds on depth have been investigated in the convex setting, see [191], [59].

4. A technically challenging problem is to adapt the construction in [Section 3, [237]] to

non-monotone paths in higher dimensions. In particular, to formalize the heuristic ar-

gument from Section 7.6.3, such construction should presumably avoid creating saddle

points.

Many more questions remain open on how to exploit the low-dimensional geometry of smooth

gradient fields, and the above four questions are only a subset of the fundamental questions that

we would like to answer. Other interesting questions include closing the logarithmic gap in

dimension 2, or understanding better the role of randomness for this problem (note that GFT

is deterministic, but other type of strategies include randomness, such as Hinder’s non-convex

cutting plane [136]).
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8
Memorization with Two-Layers Neural

Networks

8.1 Introduction

We study two-layers neural networks in Rd with k neurons and non-linearity ψ : R→ R. These

are functions of the form:

x 7→
k∑
`=1

a`ψ(w` · x+ b`) , (8.1)

with a`, b` ∈ R and w` ∈ Rd for any ` ∈ [k]. We are mostly concerned with the Rectified

Linear Unit non-linearity, namely ReLU(t) = max(0, t), in which case wlog one can restrict

the recombination weights (a`) to be in {−1, 1} (this holds more generally for positively ho-

mogeneous non-linearities). We denote by Fk(ψ) the set of functions of the form (8.1). Under

mild conditions on ψ (namely that it is not a polynomial), such neural networks are universal,

in the sense that for k large enough they can approximate any continuous function [88, 166].

In this chapter we are interested in approximating a target function on a finite data set. This

is also called the memorization problem. Specifically, fix a data set (xi, yi)i∈[n] ∈ (Rd×R)n and

an approximation error ε > 0. We denote y = (y1, . . . , yn), and for a function f : Rd → R we

write f = (f(x1), . . . , f(xn)). The main question concerning the memorization capabilities of

205



Fk(ψ) is as follows: How large should be k so that there exists f ∈ Fk(ψ) such that ‖f−y‖2 ≤
ε‖y‖2 (where ‖·‖ denotes the Euclidean norm)? A simple consequence of universality of neural

networks is that k ≥ n is sufficient (see Proposition 8.4). In fact (as was already observed in [29]

for threshold ψ and binary labels, see Proposition 8.5) much more compact representations

can be achieved by leveraging the high-dimensionality of the data. Namely we prove that for

ψ = ReLU and a data set in general position (i.e., any hyperplane contains at most d points),

one only needs k ≥ 4 · pn
d
q to memorize the data perfectly, see Proposition 8.6. The size

k ≈ n/d is clearly optimal, by a simple parameter counting argument. We call the construction

given in Proposition 8.6 a Baum network, and as we shall see it is of a certain combinatorial

flavor. In addition we also prove that such memorization can in fact essentially be achieved

in a kernel regime (with a bit more assumptions on the data): we prove in Theorem 8.8 that

for k = Ω
(
n
d

log(1/ε)
)

one can obtain approximate memorization with the Neural Tangent

Kernel [139], and we call the corresponding construction the NTK network. Specifically, the

kernel we consider is,

E [∇wψ(w · x) · ∇wψ(w · y)] = E [(x · y)ψ′(w · x)ψ′(w · y)] ,

where ∇w is the gradient with respect to the w variable and the expectation is taken over a

random initialization of w.

Measuring regularity via total weight. One is often interested in fitting the data using func-

tions which satisfy certain regularity properties. The main notion of regularity in which we are

interested is the total weight, defined as follows: For a function f : Rd → R of the form (8.1),

we define

W(f) :=
k∑
`=1

|a`|
√
‖w`‖2 + b2

` .

This definition is widely used in the literature, see Section 8.2 for a discussion and references.

Notably, it was shown in [26] that this measure of complexity is better associated with the

network’s generalization ability compared to the size of the network. We will be interested in

constructions which have both a small number of neurons and a small total weight.

Our main contribution: The complex network. As we will see below, both the Baum net-

work and the NTK networks have sub-optimal total weight. The main technical contribution

in this chapter is a third type of construction, which we call the harmonic network, that under

the same assumptions on the data as for the NTK network, has both near-optimal memorization

size and near-optimal total weight:
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Theorem 8.1. (Informal). Suppose that n ≤ poly(d). Let x1, .., xN ∈ Sd−1 such that

|xi · xj| = Õ

(
1√
d

)
.

For every ε > 0 and every choice of labels (yi)
n
i=1 such that |yi| = O(1) for all i, there exist

k = Õ
(
n
dε

)
and f ∈ Fk(ψ) such that

1

n

n∑
i=1

min
((
yi − f(xi)

)2
, 1
)
≤ ε

and such that W(f) = Õ (
√
n).

We show below in Proposition 8.3 that for random data one necessarily has W(f) =

Ω̃ (
√
n), thus proving that the harmonic network has near-optimal total weight. Moreover we

also argue in the corresponding sections that the Baum and NTK networks have total weight at

least n
√
n on random data, thus being far from optimal.

An iterative construction. Both the NTK network and the harmonic network will be built by

iteratively adding up small numbers of neurons. This procedure, akin to boosting, is justified by

the following lemma. It shows that to build a large memorizing network it suffices to be able to

build a small network f whose scalar product with the data f · y is comparable to its variance

‖f‖2:

Lemma 8.2. Fix (xi)
n
i=1. Suppose that there are m ∈ N and α, β > 0 such that the following

holds: For any choice of (yi)
n
i=1, there exists f ∈ Fm(ψ) with y ·f ≥ α‖y‖2 and ‖f‖2 ≤ β‖y‖2.

Then for all ε > 0, there exists g ∈ Fmk(ψ) such that

‖g − y‖2 ≤ ε‖y‖2

with

k ≤ β

α2
log(1/ε).

Moreover, if the above holds with W(f) ≤ ω, then W(g) ≤ ω
α

log(1/ε).

Proof. Denote η = α
β

and r1 = y. Then, there exists f1 ∈ Fm(ψ), such that

‖ηf1 − r1‖2 = ‖r1‖2 − 2ηy · f1 + η2‖f1‖2 ≤ ‖r1‖2

(
1− 2

α2

β
+
α2

β

)
≤ ‖r1‖2

(
1− α2

β

)
= ‖y‖2

(
1− α2

β

)
The result is obtained by iterating the above inequality with ri = y − η∑i−1

j=1 fj taken as the
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residuals. By induction, if we set g = η
∑k

j=1 fj , we get

‖g − y‖ = ‖ηfk − rk‖ ≤ ‖rk‖2

(
1− α2

β

)
= ‖y‖2

(
1− α2

β

)k
.

In both the NTK and harmonic constructions, the function f will have the largest possible

correlation with the data set attainable for a network of constant size. However, the harmonic

network will have the extra advantage that the function f will be composed of a single neu-

ron whose weight is the smallest one attainable. Thus, the harmonic network will enjoy both

the smallest possible number of neurons and smallest possible total weight (up to logarithmic

factors). Note however that the dependency on ε is worse for the harmonic network, which is

technically due to a constant order term in the variance which we do not know how to remove.

We conclude the introduction by showing that a total weight of Ω(
√
n) is necessary for

approximate memorization. Just like for the upper bound, it turns out that it is sufficient to

consider how well can one correlate a single neuron. Namely the proof boils down to showing

that a single neuron cannot correlate well with random data sets.

Proposition 8.3. There exists a data set (xi, yi)i∈[n] ∈ (Sd−1 × {−1, 1})n such that for every

function f of the form (8.1) with ψ L-Lipschitz and which satisfies ‖f − y‖2 ≤ 1
2
‖y‖2, it holds

that W(f) ≥
√
n

8L
.

Proof. We have

1

2
‖y‖2 ≥ ‖f − y‖2 ≥ ‖y‖2 − 2f · y⇒ f · y ≥ 1

4
‖y‖2 ,

that is
k∑
`=1

n∑
i=1

yia`ψ(w` · xi − b`) ≥
n

4
,

which implies:

max
w,b

n∑
i=1

yi
ψ(w · xi − b)√
‖w‖2 + b2

≥ n

4W(f)
.

Now let us assume that yi are ±1 uniformly at random (i.e., Rademacher random variables),

and thus by Talagrand’s contraction lemma for the Rademacher complexity (see [Lemma 26.9,

[218]]) we have:

Emax
w,b

n∑
i=1

yi
ψ(w · xi − b)√
‖w‖2 + b2

≤ L · Emax
w,b

n∑
i=1

yi
w · xi − b√
‖w‖2 + b2

≤ L · E

√√√√∥∥∥∥∥
n∑
i=1

yixi

∥∥∥∥∥
2

+ n ≤ 2L
√
n ,
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and thus W(f) ≥
√
n

8L
.

8.2 Related works

Exact memorization. The observation that n neurons are sufficient for memorization with

essentially arbitrary non-linearity was already made in [18] (using Carathéodory’s theorem),

and before that a slightly weaker bound with n + 1 neurons was already observed in [30] (or

more recently 2n+d in [252]). The contribution of Proposition 8.4 is to show that this statement

of exactly n neurons follows in fact from elementary linear algebra.

As already mentioned above, [29] proved that for threshold non-linearity and binary labels

one can obtain a much better bound of n/d neurons for memorization, as long as the data is

in general position. This was generalized to the ReLU non-linearity (but still binary labels) in

[250] (we note that this paper also considers some questions around memorization capabilities

of deeper networks). Our modest contribution here is to generalize this to arbitrary real labels,

see Proposition 8.6.

Gradient-based memorization. A different line of works on memorization studies whether

it can be achieved via gradient-based optimization on various neural network architectures. The

literature here is very large, but early results with minimal assumptions include [168,221] which

were notably generalized in [5,96]. Crucially these works leverage very large overparametriza-

tion, i.e., the number of neurons is a large polynomial in the number of data points. For a critique

of this large overparametrization regime see [76,125,248], and for a different approach based on

a certain scaling limit of stochastic gradient descent for sufficiently overparametrized networks

see [74,175]. More recently the amount of overparametrization needed was improved to a small

polynomial dependency in n and d in [149,201,222]. In the random features regime, [54] have

also considered an iterative construction procedure for memorization. This is somewhat differ-

ent than our approach, in which the iterative procedure updates the wj’s, and a much smaller

number of neurons is needed as a result. Finally, very recently Amit Daniely [89, 90] showed

that gradient descent already works in the optimal regime of k = Õ(n/d), at least for random

data (and random labels). This result is closely related to our analysis of the NTK network in

Section 8.4. Minor distinctions are that we allow for arbitrary labels, and we take a “boost-

ing approach” were neurons are added one by one (although we do not believe that this is an

essential difference).

Total weight complexity. It is well-known since [26] that the total weight of a two-layers

neural network is a finer measure of complexity than the number of neurons to control its gen-

eralization (see [193] and [15] for more recent discussions on this, as well as [27] for other

notions of norms for deeper networks). Of course the bound W = Õ(
√
n) proved here leads
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to vacuous generalization performance, as is necessary since the Harmonic network can mem-

orize completely random data (for which no generalization is possible). It would be interesting

to see if the weight of the Harmonic network can be smaller for more structured data, partic-

ularly given the context raised by the work [252] (where it was observed that SGD on deep

networks will memorize arbitrary data, hence the question of where does the seeming general-

ization capabilities of those networks come from). We note the recent work [141] which proves

for example that polylogarithmic size network is possible for memorization under a certain mar-

gin condition. Finally we also note that the effect in function space of bounding W has been

recently studied in [200, 214].

Complex weights. It is quite natural to consider neural networks with complex weights. In-

deed, as was already observed by Barron [25], the Fourier transform f(x) =
∫
f̂(ω) exp(iω ·

x)dω exactly gives a representation of f as a two-layers neural network with the non-linearity

ψ(t) = exp(it). More recently, it was noted in [10] that randomly perturbing a neuron with

complex weights is potentially more beneficial than doing a mere real perturbation. We make

a similar observation in Section 8.5 for the construction of the Harmonic network, where we

show that complex perturbations allow to deal particularly easily with higher order terms in

some key Taylor expansion. Moreover we also note that [10] considers non-linearity built from

Hermite polynomials, which shall be a key step for us too in the construction of the Harmonic

network (the use of Hermite polynomials in the context of learning theory goes back to [146]).

While orthogonal to our considerations here, we also note the work of Fefferman [115],

where he used the analytical continuation of a (real) neural network to prove a certain unique-

ness property (essentially that two networks with the same output must have the same weights

up to some obvious symmetries and obvious counter-examples).

8.3 Elementary results on memorization

In this section we give a few examples of elementary conditions on k, ψ and the data set so

that one can find f ∈ Fk(ψ) with f = y (i.e., exact memorization). We prove three results: (i)

k ≥ n suffices for any non-polynomial ψ, (ii) k ≥ n
d

+ 3 with ψ(t) = 1{t ≥ 0} suffices for

binary labels with data in general position (this is exactly [29]’s result), and (iii) k ≥ 4 · pn
d
q

with ψ = ReLU suffices for data in general position and arbitrary labels.

We start with the basic linear algebraic observation that having a number of neurons larger

than the size of the data set is always sufficient for perfect memorization:

Proposition 8.4. Assuming that ψ is not a polynomial, there exists f ∈ Fn(ψ) such that f = y.

Proof. Note that the set of functions of the form (8.1) (with arbitrary k) corresponds to the

vector space V spanned by the functionsψw,b : x 7→ ψ(w·x+b). Consider the linear operator Ψ :
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V → Rn that corresponds to the evaluation on the data points (xi) (i.e., Ψ(f) = (f(xi))i∈[n]).

Since ψ is not a polynomial, the image of Ψ is Im(Ψ) = Rn. Moreover Im(Ψ) is spanned by

the set of vectors Ψ(ψw,b) for w ∈ Rd, b ∈ R. Now, since dim(Im(Ψ)) = n, one can extract a

subset of n such vectors with the same span, that is there exists w1, b1, . . . , wn, bn such that

span(Ψ(ψw1,b1), . . . ,Ψ(ψwn,bn)) = Rn ,

which concludes the proof.

In [29] it is observed that one can dramatically reduce the number of neurons for high-

dimensional data:

Proposition 8.5. Fix ψ(t) = 1{t ≥ 0}. Let (xi)i∈[n] be in general position in Rd (i.e., any

hyperplane contains at most d points), and assume binary labels, i.e., yi ∈ {0, 1}. Then there

exists f ∈ Fn
d

+3(ψ) such that f = y.

Proof. [29] builds a network iteratively as follows. Pick d points with label 1, say x1, . . . , xd,

and let H = {x : u · x = b} be a hyperplane containing those points and no other points in the

data, i.e., xi 6∈ H for any i > d. With two neurons (i.e., f ∈ F2(ψ)) one can build the indicator

of a small neighborhood of H , namely f(x) = ψ(u · x− (b− τ))− ψ(u · x− (b + τ)) with τ

small enough, so that f(xi) = 1 for i ≤ d and f(xi) = 0 for i > d. Assuming that the label 1 is

the minority (which is without loss of generality up to one additional neuron), one thus needs

at most 2p n
2d
q neurons to perfectly memorize the data.

We now extend Proposition 8.5 to the ReLU non-linearity and arbitrary real labels. To do

so we introduce the derivative neuron of ψ defined by:

fδ,u,v,b : x 7→ ψ((u+ δv) · x− b)− ψ(u · x− b)
δ

, (8.2)

with δ ∈ R and u, v ∈ Rd. As δ tends to 0, this function is equal to

fu,v,b(x) = ψ′(u · x− b)v · x (8.3)

for any x such that ψ is differentiable at u · x − b. In fact, for the ReLU one has for any x

such that u · x 6= b that fδ,u,v,b(x) = fu,v,b(x) for δ small enough (this is because the ReLU is

piecewise linear). We will always take δ small enough and u such that fδ,u,v,b(xi) = fu,v,b(xi)

for any i ∈ [n], for example by taking

δ =
1

2
min
i∈[n]

|u · xi − b|
|v · xi|

. (8.4)
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Thus, as far as memorization is concerned, we can assume that fu,v,b ∈ F2(ReLU). With this

observation it is now trivial to prove the following extension of Baum’s result:

Proposition 8.6. Let (xi)i∈[n] be in general position inRd (i.e., any hyperplane contains at most

d points). Then there exists f ∈ F4·pn
d
q(ReLU) such that f = y.

Proof. Pick an arbitrary set of d points, say (xi)i≤d, and letH = {x : u ·x = b} be a hyperplane

containing those points and no other points in the data, i.e., xi 6∈ H for any i > d. With

four neurons one can build the function f = fu,v,b−τ − fu,v,b+τ with τ small enough so that

f(xi) = xi · v for i ≤ d and f(xi) = 0 for i > d. It only remains to pick v such that v · xi = yi

for any i ≤ d, which we can do since the matrix given by (xi)i≤d is full rank (by the general

position assumption).

Let us now sketch the calculation of this network’s total weight in the case that the xi’s are

independent uniform points on Sd−1 and yi are ±1-Bernoulli distributed. We will show that the

total weight is at least n2/
√
d, thus more than n times the optimal attainable weight given in

Proposition 8.3.

Consider the matrix X whose rows are the vectors (xi)i≤d. The vector v taken in the neuron

corresponding to those points solves the equation Xv = y and since the distribution of X is

absolutely continuous, we have that X is invertible almost surely and therefore v = X−1y,

implying that |v| ≥ ‖X‖−1
OP

√
d. It is well-known (and easy to show) that with overwhelming

probability, ‖X‖OP = O(1), and thus ‖v‖ = Ω(
√
d).

Observe that by normalizing the parameter δ accordingly, we can assume that ‖u‖ = 1. By

definition we have u ·xi = b for all i = 1, . . . , d. A calculation shows that with probability Ω(1)

we have b = Θ(1/
√
d).

Next, we claim that |v · u| ≤ (1 − ρ)‖v‖ for some ρ = Ω(1). Indeed, suppose otherwise.

Denote c = 1
d

∑
i∈[d] xi. It is easy to check that with high probability, ‖c‖ = O

(
1√
d

)
. Note that

v · c = 1
d

∑
i∈[d] yi = O(1/

√
d). This implies that

b(|v · u| −O(1)) ≤ |v · (bu− c)| ≤
√
‖v‖2 − (v · u)2‖bu− c‖ ≤

√
2ρ
‖v‖√
d
,

where we used the fact that (bu− c) ⊥ (v · u)u. Thus we have

Ω(1− 2ρ) = b(1− 2ρ)‖v‖ = O(
√
ρ).

leading to a contradiction. To summarize, we have ‖v‖ = Ω(
√
d), ‖u‖ = 1, |u·v| ≤ (1−ρ)‖v‖,

ρ = Ω(1), and b = O(1/
√
d). Since spherical marginals are approximately Gaussian, if x is

uniform in Sd−1 we have that the joint distribution of (x · u, x · v) conditional on v and u is

approximately N
(

0, 1
d

(
1 (1− ρ)β

(1− ρ)β β

))
with ρ = Ω(1) and β = Θ(d). Therefore,

with probability Ω(1/n) we have |x · v| = Ω(1) and |x · u− b| = O(1/(n
√
d)).
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We conclude that

P
(
∃i ≥ d+ 1 s.t.

|xi · u− b|
|xi · v|

= O

(
1

n
√
d

)∣∣∣∣x1, ..., xd

)
= Ω(1).

Therefore, we get δ = O(1/n
√
d) which implies that the weight of the neuron is of order at least

‖u‖
δ

= Ω(n
√
d). This happens with probability Ω(1) for every one of the first n/(2d) neurons,

implying that the total weight is of order n2/
√
d.

8.4 The NTK network

The constructions in Section 8.3 are based on a very careful set of weights that depend on the

entire dataset. Here we show that essentially the same results can be obtained in the neural

tangent kernel regime. That is, we take pair of neurons as given in (8.2) (which corresponds in

fact to (8.3) since we will take δ to be small, we will also restrict to b = 0), and crucially we

will also have that the “main weight” u will be chosen at random from a standard Gaussian, and

only the “small perturbation” v will be chosen as a function of the dataset. The guarantee we

obtain is slightly weaker than in Proposition 8.6: we have a log(1/ε) overhead in the number of

neurons, and moreover we also need to assume that the data is “well-spread”. Specifically we

consider the following notion of “generic data”:

Definition 8.7. We say that (xi)i∈[n] are (γ, ω)-generic (with γ ∈ ( 1
2n
, 1) and ω > 0) if:

• ‖xi‖ ≥ 1 for all i ∈ [n],

• 1
n

∑n
i=1 xix

>
i � ω

d
· Id,

• and |xi · xj| ≤ γ · ‖xi‖ · ‖xj‖ for all i 6= j.

In the following we fix such a (γ, ω)-generic data set. Note that i.i.d. points on the sphere

are
(
O

(√
log(n)
d

)
, O(1)

)
-generic. We now formulate our main theorem concerning the NTK

network.

Theorem 8.8. There exists f ∈ Fk(ReLU), produced in the NTK regime (see Theorem 8.9

below for more details) with E[‖f − y‖2] ≤ ε‖y‖2 (the expectation is over the random initial-

ization of the “main weights”) provided that

k · d ≥ 20ω · n log(1/ε) · log(2n)

log(1/γ)
. (8.5)

In light of Lemma 8.2, it will be enough to produce a width-2 network, f ∈ F2(ReLU),

whose correlation with the data set is large.
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Theorem 8.9. There exists f ∈ F2(ReLU) with

y · f ≥ 1

10
·
√

log(1/γ)

log(2n)
· ‖y‖2 , (8.6)

and

‖f‖2 ≤ ω · n
d
‖y‖2 . (8.7)

In fact, one can take the construction (8.2) with:

u ∼ N (0, Id), v =
∑

i:u·xi≥0

yixi, δ =
1

2

mini∈[n] |u · xi|
|v · xi|

. (8.8)

which produces f ∈ F2(ReLU) such that (8.6) holds in expectation and (8.7) holds almost

surely.

To deduce Theorem 8.8 from Theorem 8.9, apply Lemma 8.2 with α = 1
10
·
√

log(1/γ)
log(2n)

and

β = ω·n
d

.

For u ∈ Rd, set

fu(x) = ψ′(u · x)v · x, (8.9)

where v is defined as in (8.8). Observe that as long as u · xi 6= 0,∀i ∈ [n], a small enough

choice of δ ensures the existence of f ∈ F2(ReLU) such that f = fu.

To prove Theorem 8.9, it therefore remains to show that fu satisfies (8.6) and (8.7) with

positive probability as u ∼ N (0, Id). This will be carried out in two steps: First we show that

the correlation y · f for a derivative neuron has a particularly nice form as a function of u, see

Lemma 8.10. Then, in Lemma 8.11 we derive a lower bound for the expectation of the correla-

tion under u ∼ N (0, Id). Taken together these lemmas complete the proof of Theorem 8.9.

Lemma 8.10. Fix u ∈ Rd, the function fu defined in (8.9) satisfies

n∑
i=1

yifu(xi) =

∥∥∥∥∥ ∑
i:u·xi≥0

yixi

∥∥∥∥∥
2

, (8.10)

and furthermore
n∑
i=1

fu(xi)
2 ≤ ω · n

d
·

n∑
i=1

yif(xi) . (8.11)

Proof. We may write
n∑
i=1

fu(x)yi =
n∑
i=1

ψ′(u · xi)yixi · v .
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To maximize this quantity we take v =
∑n

i=1 ψ
′(u · xi)yixi so that the correlation is exactly

equal to:

‖v‖2 =

∥∥∥∥∥
n∑
i=1

ψ′(u · xi)yixi
∥∥∥∥∥

2

, (8.12)

which concludes the proof of (8.10) (note also that ψ′(t) = 1{t ≥ 0} for the ReLU). Moreover

for (8.11) it suffices to also notice that (recall that for ReLU, |ψ′(t)| ≤ 1)

n∑
i=1

fu(xi)
2 =

n∑
i=1

(ψ′(xi · u))2(xi · v)2 ≤ λmax

(
n∑
i=1

xix
>
i

)
· ‖v‖2 . (8.13)

Lemma 8.11. One has:

Eu∼N (0,In)

∥∥∥∥∥ ∑
i: u·xi≥0

yixi

∥∥∥∥∥
2

≥ 1

10
·
√

log(1/γ)

log(2n)
·

n∑
i=1

y2
i ‖xi‖2 .

Proof. First note that

E

∥∥∥∥∥ ∑
i: u·xi≥0

yixi

∥∥∥∥∥
2

= y>Hy ,

where

Hi,j = E[xi · xj1{u · xi ≥ 0}1{u · xj ≥ 0}] =
2

π
xi · xj

(
1

4
+ arcsin

(
xi
‖xi‖

· xj
‖xj‖

))
.

Let us denote V the matrix with entries Vi,j = xi
‖xi‖ ·

xj
‖xj‖ and D the diagonal matrix with entries

‖xi‖. Note that V � 0 and thus we have (recall also that arcsin(t) =
∑∞

i=0
(2i)!

(2ii!)2 · t
2i+1

2i+1
):

D−1HD−1 � 2

π

∞∑
i=0

(2i)!

(2ii!)2
· V
◦2(i+1)

2i+ 1
.

Now observe that for any i, by the Schur product theorem one has V ◦i � 0. Moreover V ◦i is

equal to 1 on the diagonal, and off-diagonal it is smaller than γi, and thus for i ≥ log(2n)
log(1/γ)

one

has V ◦i � 1
2
In. In particular we obtain:

D−1HD−1 �

 1

π

∞∑
i≥ log(2n)

2 log(1/γ)

(2i)!

(2ii!)2
· 1

2i+ 1

 In .
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It is easy to verify that (2i)!
(2ii!)2 ≥ 1

8·i3/2 , and moreover
∑

i≥N
1
i3/2
≥ 2√

N
, so that for γ ∈ ( 1

2n
, 1),

1

π

∞∑
i≥ log(2n)

2 log(1/γ)

(2i)!

(2ii!)2
· 1

2i+ 1
≥ 1

10
·
√

log(1/γ)

log(2n)
,

which concludes the proof.

We conclude the section by sketching the calculation of the total weight of this network.

Recall that the neurons are of the form (8.9). According to (8.12) and Lemma 8.11, we have that

for typical neurons, ‖v‖ = Ω(
√
n). Moreover, with high probability we have ‖u‖ = Θ(

√
d),

and thus the weight of a single neuron is at least ‖u‖
δ

=
√
d
δ

. Adding up the neurons, this shows

that the total weight is of order
√
d
δ

(since k = Θ̃(n/d) and the coefficient in front of the neurons

is of order Θ̃( d
n
)).

Now suppose that δ is taken according to (8.4). The main observation (we omit the details

of proof) is that u and v have a mutual distribution of roughly independent Gaussian random

vectors (without loss of generality we can assume that
∑
yi = 0 which implies Eu · v = 0). In

this case we have δ = Õ
( √

d
n
√
n

)
. This implies a total weight of order at least n

√
n.

8.5 The complex network

We now wish to improve upon the NTK construction, by creating a network with similar mem-

orization properties and which has almost no excess total weight. We will work under the

assumptions that

‖xi‖ = 1 for every i ∈ [n], and, |xi · xj| ≤ γ for i 6= j. (8.14)

In light of Lemma 8.2, it is enough to find a single neuron whose scalar product with the data

set is large. Thus, the rest of this section is devoted to proving the following theorem.

Theorem 8.12. Assume that (8.14) holds, that m is large enough so that nγm−2 ≤ 1
2

and that

for all i ∈ [n], y2
i ≤ nγ2 with ‖y‖2 ≤ n. Then, there exist w ∈ Rd and b, σ ∈ R, with

‖w‖2, |b|2 ≤ Cmd log(n)m, |σ| = 1,

such that for

f(x) = σ · ReLU
(
w · x+ b

)
,

we have

y · f ≥ cm
log(n)m2/2

1√
nγ2
‖y‖2,
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and

‖f‖2 ≤ n

cm
log(n)m,

where cm, Cm > 0 are constants which depends only on m.

By invoking an iterative procedure as in Lemma 8.2, we obtain our main estimate. As it

turns out, our construction will give a good fit for almost all points. If A ⊂ [n] and v ∈ Rn we

denote below by vA the projection of v unto the indices contained in A. With this notation our

result is:

Theorem 8.13. Assume that (8.14) holds, that m is large enough so that nγm−2 ≤ 1
2

and that

‖y‖2 = n. There exists f ∈ Fk(ReLU) and A ⊂ [n], with

k =

⌈
Cmγ

2 log(1/ε)

ε
n log(n)(m2+m)

⌉
,

such that

E[‖fA − yA‖2] ≤ ε‖y‖2, |A| ≥ n− 1

γ2
, (8.15)

and

W(f) = Õ

(
log(1/ε)

ε

√
nγ2d

)
, (8.16)

where Cm is a constant which depends only on m.

Observe that if (xi)i∈[n] are uniformly distributed in the Sd−1 then γ = Õ
(

1√
d

)
and we get

that W(f) = Õ
(

log(1/ε)
ε

√
n
)
, which is optimal up to the logarithmic factors and the depen-

dence on ε.

The proof of Theorem 8.13 follows an iterative procedure similar to the one carried out in

Lemma 8.2. The only caveat is the condition y2
i ≤ nγ2 which appears in Theorem 8.12. Due

to this condition we need to consider a slightly smaller set of indices at each iteration, ignoring

ones where the residue becomes too big.

Proof of Theorem 8.13. We build the network iteratively. Set f0 ≡ 0, A0 = [n] and r0,i = yi.

Now, for ` ∈ N, suppose that there exists f` ∈ F`(ReLU) with

‖(f`)A` − yA`‖ ≤
(

1− c3
m

log(n)m2+m

ε

nγ2

)
‖y‖2.

Set r`,i = yi − f`(xi) and A` = {i ∈ A`−1|r2
`,i ≤ nγ2}. We now invoke Theorem 8.12 with the

residuals {r`,i|i ∈ A`} to obtain a neuron f ∈ F1(ReLU), which satisfies

(r`)A` · f ≥
cm

log(n)m2/2

1√
nγ2
‖r`‖2,

217



and

‖fA`‖2 ≤ n

cm
log(n)m.

Since we may assume ‖(r`)A`‖2 ≥ nε (otherwise we are done), the second condition can be

rewritten as

‖fA`‖2 ≤ log(n)m

cmε
‖(r`)A`‖2.

In this case the calculation done in Lemma 8.2 with α = cm
log(n)m

2/2

1√
nγ2

and β = log(n)m

cmε
shows

that for η := c2mε

log(n)m
2/2+m

, one has

‖ηfA` − (r`)A`‖2 ≤
(

1− c3
m

log(n)m2+m

ε

nγ2

)
‖(r`)A`‖2.

In other words, if we define f`+1 ∈ F`+1 (ReLU) by f`+1 = f` + ηf ,

‖(f`+1)A` − yA`‖2 ≤
(

1− c3
m

log(n)m2+m

ε

nγ2

)`+1

‖y‖2.

The estimate (8.15) is now obtained with the appropriate choice of k. Let us also remark that

for any `,

‖(r`+1)A`‖2 ≤ ‖(r`)A`‖2 ≤ ‖(r`)A`−1
‖2 − nγ2|A`−1 \ A`|.

By induction

‖(r`+1)A`‖2 ≤ ‖y‖2 − nγ2 (n− |A`|)

This shows that |A`| ≥ n− 1
γ2 . The bound on W(fk) a direct consequence of Lemma 8.2.

8.5.1 Correlation of a perturbed neuron with random sign

Towards understanding our construction, let us first revisit the task of correlating a single neu-

ron with the data, namely we want to maximize over w the ratio between |∑n
i=1 yiψ(w · xi)|

and
√∑n

i=1 ψ(w · xi)2. Note that depending on whether the sign of the correlation is positive

or negative, one would eventually take either neuron x 7→ ψ(w · x) or x 7→ −ψ(w · x). Let

us first revisit the NTK calculation from the previous section, emphasizing that one can take a

random sign for the recombination weight a.

The key NTK-like observation is that a single neuron perturbed around the parameterw0 and

with random sign can be interpreted as a linear model over a feature mapping that depends onw.

More precisely (note that the random sign cancels the 0th order term in the Taylor expansion):

Ea∼{−δ,δ} a−1ψ
(
(w + av) · x

)
= Φw(x) · v +O(δ) , where Φw(x) = ψ′(w · x)x . (8.17)
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In particular the correlation to the data of such a single random neuron is equal in expectation

to
∑

i yiΦw(xi) · v +O(δ), and thus it is natural to take the perturbation vector v to be equal to

v0 = η
∑

i yiΦw(xi) (where η will be optimized to balance with the variance term), and we now

find that:

Ea∼{−δ,δ}
n∑
i=1

yia
−1ψ((w+av0)·xi) =

∥∥∥∥∥η∑
i

yiΦw(xi)

∥∥∥∥∥
2

+O(δ) = ηy>H(w)y+O(δ) , (8.18)

where H(w) is the Gram matrix of the feature embedding, namely

H(w)i,j = Φw(xi) · Φw(xj).

Note that for ψ = ReLU , one has in fact that the term O(δ) in (8.17) disappears for δ small is

enough, and thus the correlation to the data is simply ηy>H(w)y in that case.

As we did with the NTK network, we now also take the base parameter w at random from a

standard Gaussian. As we just saw, understanding the expected correlation then reduces to lower

bound (spectrally) the Gram matrix H defined by Hi,j = Ew∼N (0,Id)[ψ
′(w · xi)ψ′(w · xj)xi · xj].

This was exactly the content of Lemma 8.11 for ψ = ReLU.

8.5.2 Eliminating the higher derivatives with a complex trick

The main issue of the strategy described above is that it requires to take δ small, which in turn

may significantly increase the total weights of the resulting network. Our next idea is based on

the following observation: Taking a random sign in (8.17) eliminates all the even order term

in the Taylor expansion since Ea∼{−1,1}[a
−1am] = 0 for any even m (while it is = 1 for any

odd m). However, taking a complex a, would rid us of all terms except the first order term.

Namely, one has Ea∈C:|a|=1[a−1am] = 0 for any m 6= 1. This suggests that it might make sense

to consider neurons of the form

x 7→ Re
(
a−1ψ

(
(w + av) · x

))
,

where a is a complex number of unit norm.

The challenge is now to give sense to ψ(z) for a complex z, so that the rest of the argument

remains unchanged. This gives rise to two caveats:

• There is no holomorphic extension of the ReLU function.

• The holomorphic extension of the activation function, even if exists, is a function of two

(real) variables. The expression ψ
(
(w + av) · x

)
when a /∈ R is not a valid neuron to be

219



used in our construction since we’re only allowed to use the original activation function

as our non-linearity.

To overcome these caveats, the construction will be carried out in two steps, where in the

first step we use polynomial activation functions, and in the second step, we replace these by

the original activation function. It turns out that the calculation in Lemma 8.11 is particularly

simple when the derivative of the activation function is a Hermite polynomial (see Section 8.6

for definitions), which is in particular obviously well-defined on C and in fact holomorphic. In

the sequel, we fix m ∈ N so that

nγm−2 ≤ 1

2
. (8.19)

Define

ϕ(z) =
1√
m
Hm(z), z ∈ C

where Hm is the m-th Hermite polynomial. Note that we also have ϕ′ = Hm−1.

The first step of our proof will be to obtain a result analogous to Theorem 8.12 where ψ is

replaced by ϕ.

Lemma 8.14. Assume that (8.14) holds, that m is large enough so that nγm−2 ≤ 1
2

and that for

all i ∈ [n], one has y2
i ≤ nγ2. There exist w̃, w̃′ ∈ Rd and z ∈ C, |z| = 1, such that for

g(x) = Re
(
z · ϕ

((
w̃ + iw̃′

)
· x
))
, (8.20)

we have,

y · g ≥ 1

2Cm
√
nγ2
‖y‖2.

Moreover, its weights admit the bounds

‖w̃‖2, ‖w̃′‖2 ≤ d(4Cm log(n))m (8.21)

and for all i ∈ [n],

|w̃ · xi|, |w̃′ · xi| ≤ (4Cm log(n))
m
2 .

Given the above lemma, the second step towards Theorem 8.12 is to replace the polynomial

attained by the above lemma by a ReLU. This will be achieved by:

• Observing that any polynomial in two variables p(x, y) can be written as a linear com-

bination of polynomials which only depend on one direction, hence polynomials of the

form q(ax+ by).

• Using the fact that any nice enough function of one variable can be written as a mixture

of ReLUs, due to the fact that the second derivative of the ReLU is a Dirac function (this

was observed before, see e.g., [Lemma A.4, [142]]).
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• The above implies that one can write the function (x, y) 7→ ϕ(x + iy) as the expectation

of ReLUs such that the variance at points close to the origin is not too large.

These steps will be carried out in Section 8.5.4 below.

8.5.3 Constructing the complex neuron

Our approach to Lemma 8.14 will be to construct an appropriate distribution on neurons of type

(8.20), and then show that the desirable properties are attained with positive probability. In what

follows, let w ∼ N (0, Id). Define

v(w) :=
1√
nγ2

n∑
i=1

yiϕ
′(w · xi)xi.

Next, let a be uniformly distributed in the complex unit circle, and finally define

g(x) = Re
(
a−1ϕ((w + av(w)) · x)

)
. (8.22)

We will prove the following two bounds.

Lemma 8.15. Under the assumptions (8.14) and (8.19), one has

E [y · g] ≥ 1

2
√
nγ2
‖y‖2 .

Lemma 8.16. Suppose that the assumptions (8.14) and (8.19) hold. Assume also that for every

i we have yi ≤ nγ2. Then one has, for a constant Cm > 0 which depends only on m,

E[‖g‖2] ≤ Cmn.

Moreover, for every i ∈ [n] and s > s0, for some constant s0,

P (|Re((w + v(w)) · xi| > s) ,P (|Im((w + v(w))) · xi| > s) ≤ exp

(
1

Cm
s−2/m

)
. (8.23)

Recall the definition of the Gram matrix H ,

Hi,j = Ew∼N (0,Id) [ϕ′(w · xi)ϕ′(w · xj)xi · xj] .

As suggested in (8.18), we will need to bound H from below. We will need the following

lemma.

Lemma 8.17. Under the assumptions (8.14) and (8.19), one has H � 1
2
In.

Proof. If X and Y are standard, jointly-normal random variables with E [XY ] = ρ, by Lemma

8.22 one has E[Hm−1(X)Hm−1(Y )] = ρm−1 and thus here Hi,j = (xi · xj)m. In particular if
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n · γm ≤ 1/2 we obtain that for all i ∈ [n] one has 1 = Hi,i ≥ 2
∑

j 6=i |Hi,j|. By diagonal

dominance we conclude that H � 1
2
In.

Proof of Lemma 8.15. For any β ∈ N, β 6= 1, we have that E
[
a−1+β

]
= 0. Thus, since ϕ is an

entire function, by taking its Taylor expansion around the point w, we obtain the identity

Ea
[
a−1ϕ((w + av(w)) · x)

]
=
∞∑
β=0

1

β!
Ea
[
a−1+βϕ(β)(w · xi)(v(w) · x)β

]
= ϕ′(w · x)v(w) · x.

So we can estimate

Ew,a

[
n∑
i=1

yiRe
(
a−1ϕ((w + av(w)) · xi)

)]
=

n∑
i=1

yiEw [ϕ′(w · xi)v(w) · xi]

=
1√
nγ2

∑
i,j

yiyjEw [ϕ′(w · xi)ϕ′(w · xj)xi · xj]

=
1√
nγ2

y>Hy ≥ 1

2
√
nγ2
‖y‖2,

where the last inequality follows from Lemma 8.17.

Proof of Lemma 8.16. In what follows, the expression Cm will denote a constant depending

only on m, whose value may change between different appearances. Our objective is to obtain

an upper bound on

‖g‖2 =
n∑
i=1

|Re
(
a−1ϕ((w + av(w)) · xi)

)
|2.

Since ϕ is a polynomial of degree m we have

‖g‖2 ≤ Cm

n∑
i=1

(
1 + |w · xi|2m + |v(w) · xi|2m

)
.

Moreover w · xi is a standard Gaussian and thus E[|w · xi|2m] ≤ (2m)m. It therefore remains to

control, for x ∈ {x1, . . . , xn}, the expression

|v(w) · x|2m =
1

(nγ2)m

∣∣∣∣∣
n∑
i=1

yiHm−1(w · xi)xi · x
∣∣∣∣∣
2m

.

From hypercontractivity and the fact that the Hermite polynomials are eigenfunctions of the

Ornstein-Uhlenbeck operator we have (see [140, Theorem 5.8])

E
[
|v(w) · x|2m

]
≤ (2m)2m2E

[
|v(w) · x|2

]m
.
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Thus, it will be enough to show that Ew[|v(w) · xj|2] = O(1). We calculate

Ew[|v(w) · xj|2] =
1

nγ2
E

∣∣∣∣∣
n∑
i=1

yiHm−1(w · xi)xi · xj
∣∣∣∣∣
2

=
1

nγ2

(
E

n∑
i=1

y2
iE[(Hm−1(w · xi))2]|xi · xj|2

+
∑
i 6=i′

yiyi′E[Hm−1(w · xi)Hm−1(w · x′i)](xi · xj)(xi′ · xj)
)

≤ 1

nγ2

(
n∑
i=1

y2
i |xi · xj|2 +

γm−1

nγ2

∑
i 6=i′
|yiyi′(xi′ · xj)(xi · xj)|

)
,

where we used that E[(Hm−1(w · xi))2] = 1 and

|E[Hm−1(w · xi)Hm−1(w · xi′)]| = |xi · xi′|m−1 ≤ γm−1,

valid whenever i 6= i′. By using that ‖y‖2 = O(n), we get

1

nγ2

n∑
i=1

y2
i |xi · xj|2 ≤

y2
j

nγ2
+
‖y‖2

n
= O(1).

To deal with the last term, observe that since i 6= i′ then |(xi′ · xj)(xi · xj)| ≤ γ, thus

γm−1

nγ2

∑
i 6=i′
|yiyi′(xi′ · xj)(xi · xj)| ≤

γm−2

n

(
n∑
i=1

|yi|
)2

≤ γm−2‖y‖2 = O(1),

where in the last inequality we’ve used γm−2 ≤ 1
n

. So, Ew[|v(w) · xi|2] = O(1) as required.

Finally, to see (8.23) observe that both Re(w+v(w)) and Im(w+v(w)) are given by degree

m polynomials of w, a standard Gaussian random vector. In [140, Theorem 6.7] it is shown that

there exists a constant am depending only on m, such that if P is a polynomial of degree m and

X is a standard normal random variable, then for every t > 2,

P
(
|p(X)| > t

√
E [p(X)2]

)
≤ exp

(
−amt2/m

)
Thus, since

E
[
|Re(w + v(w)) · xi|2

]
,E
[
|Im(w + v(w)) · xi|2

]
≤ E

[
1 + |w · xi|2m + |v(w) · xi|2m

]
≤ Cm,

the bound (8.23) follows.
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We are finally ready to prove the existence of the complex neuron.

Proof of Lemma 8.14. Consider the random variable

F = g · y =
n∑
i=1

yig(xi)

and set W = Re(w + v(w)) and W ′ = Im(w + v(w)). Lemma 8.15 gives

E [F ] ≥ 1

2
√
nγ2
‖y‖2.

Using Lemma 8.16 and Cauchy-Schwartz we may see that

E
[
F 2
]
≤

n∑
i=1

y2
iEw,a

[
n∑
i=1

g(xi)
2

]
≤ Cmn‖y‖2.

Define G = 1{∃i:|W ·xi|,|W ′·xi|≥(4Cm log(n))
m
2 }. A second application of Cauchy-Schwartz gives

E
[
FG
]
≤
√
Cmn‖y‖2E [G].

Now, the estimate (8.23) and a union bound yields

E [G] ≤ n exp (−4 log(n)) ≤ 1

n3
.

Therefore,

E
[
FG
]
≤ 1

n
Cm‖y‖.

Combining this with the lower bound of E[F ], we finally have

E
[
F (1−G)

]
≥ 1

2
√
nγ2
‖y‖2 − 1

n
Cm‖y‖ ≥

1

4
√
nγ2
‖y‖2,

where the last inequality is valid as long as n is large enough. The claim now follows via taking

a realization that exceeds the expectation. Since we might as well assume that the sample

contains an orthonormal basis, (8.21) follows as well.

8.5.4 Approximating a complex neuron with ReLU activation

Our goal in this section is to prove the following lemma, showing that the complex polynomial

can be essentially replaced by a ReLU. We write ψ(t) = ReLU(t) and recall that φ(t) =
1√
m
Hm(t).
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Lemma 8.18. For any w,w′ ∈ Rd, z ∈ C with |z| = 1 and M > 0, there exist a pair

of random variables S,B and a random vector W ∈ Rd such that for any x ∈ Sd−1 with

m (|w · x|+ |w′ · x|) ≤M ,

E [Sψ(W · x−B)] =
cz,m
Mm

Re (z · ϕ(w · x+ iw′ · x)) ,

where cz,m depends only on m and z and there exists another constant cm, such that

1

cm
≥ cz,m ≥ cm. (8.24)

Moreover,

|S| = 1, |B| ≤M almost surely,

and

W = w + j · w′ for some j ∈ {0, 1, . . . ,m}.

Let us first see how to complete the proof of Theorem 8.12 using the combination of the

above with Lemma 8.14.

Proof of Theorem 8.12. Invoke Lemma 8.14 to obtain a function

g(x) = Re (z · ϕ (x · w̃ + ix · w̃′))

such that

y · g ≥ 1

2Cm
√
nγ2
‖y‖2,

and such that for every i ∈ [n],

|w̃ · xi|, |w̃′ · xi| ≤ Cm log(n)
m
2 .

Set M = 2Cmm log(n)
m
2 , so that m(|w̃ · xi| + |w̃′ · xi|) ≤ M . By Lemma 8.18, we may find

σ,w, b, such that

|b|2 ≤M2, ‖w‖2 ≤ m2(‖w̃‖+ ‖w̃′‖)2 ≤ 4Cmm
2d log(n)m, |σ| = 1,

for which we define f(x) = σψ(w · x− b). The lemma then implies,

y · f ≥ cm
Mm

y · g ≥ c′m

Mm
√
nγ2
‖y‖2,
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and

‖f‖2 =
n∑
i=1

(ψ(w · xi − b))2 ≤ 2
n∑
i=1

(
|w · xi|2 + b2

)
≤ 2M2n+ 2

n∑
i=1

|w · xi|2.

By Lemma 8.18, w = w̃+j ·w̃′ for some j = 0, ...,m . Hence, |w·xi|2 ≤ 2m(|w̃·xi|2+|w̃′ ·xi|2)

and

‖f‖2 ≤ 2M2n+ 4m
n∑
i=1

(|w̃ · xi|2 + |w̃ · xi|2) ≤ 10mM2n.

The proof is concluded by substituting M .

It remains to prove Lemma 8.18. This is done in the next subsections.

On homogeneous polynomials

Since our aim is to approximate a polynomial by ReLU, we first find an appropriate polynomial

basis to work with.

Lemma 8.19. Any polynomial of the form (x, y)→ Re(z · (x+ iy)m) has the form,

m∑
j=0

aj(x+ j · y)m.

Proof. Define

Hm = {p(x, y)|p is a degree m homogeneous polynomial},

and

Am = {(x+ j · y)m|j = 0, ...,m}.

It will suffice to show thatAm forms a basis forHm. The result will follow sinceRe(z·(x+iy)m)

is clearly homogeneous. For 0 ≤ j ≤ m, set pj = (x+ j · y)m, so that pj ∈ Am and

pj =
m∑
k=0

(
m

k

)
jkykxm−k.

Note that the set {
(
m
k

)
ykxm−k|k = 0, ...,m} forms a basis for Hm and in that basis pj has

coordinates (1, j, . . . , jm). Taking the Vandermonde determinant of the matrix whose columns

are {pj : j = 0, ...,m}, we see that it must also be a basis forHm.

226



Corollary 8.20. Let w,w′ ∈ Rd and z ∈ C, then we have the following representation:

Re (z · ϕ(w · x+ iw′ · x)) =
m∑
j=0

pz,j((w + jw′) · x),

where each pz,j is a polynomial of degree m, which depends continuously on z.

Proof. The representation is immediate from the previous lemma. To address the point of con-

tinuity, we write

Re (z · ϕ(w · x+ iw′ · x)) = Re(z)Re (ϕ(w · x+ iw′ · x))− Im(z)Im (ϕ(w · x+ iw′ · x))

= Re(z)Re (ϕ(w · x+ iw′ · x)) + Im(z)Re (i · ϕ(w · x+ iw′ · x))

=
m∑
j=0

(Re(z)p1,j((w + jw′) · x) + Im(z)pi,j((w + jw′) · x)) .

So, pz,j is a linear combination of p1,j and pi,j , with coefficients that vary continuously in z.

ReLUs as universal approximators

Next, we show how ReLU functions might be used to universally approximate compactly sup-

ported functions.

Proposition 8.21. Let f : R→ R be twice differentiable and compactly supported on [−M,M ].

Then, there exists a pair of random variables S,B, such that, for every x ∈ [−M,M ],

E [Sψ(x−B)] =
f(x)∫
|f ′′| ,

and such that, almost surely |B| ≤M and |S| = 1.

Proof. Observe that, when considered as a distribution, ψ(x)′′ = δ0. Therefore, there exists a

linear function L such that

f(x) + L(x) =

∫ M

−M
ψ(x− y)f ′′(y)dy.

f ′′(x) is the second derivative of a compactly supported function which implies that f(x)+L(x)

is compactly supported as well. Hence, L(x) ≡ 0. Let B be the random variable whose density

is |f ′′|∫M
−M |f ′′|

and set S = sign(f ′′(B))). We now have

E [Sψ(x−B)] =

∫M
−M ψ(x− y)f ′′(y)dy∫M

−M |f ′′|
=

f(x)∫
|f ′′| .
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Completing the proof of Lemma 8.18

Set χM to be a bump function for the interval [−M,M ]. That is,

• χM : R→ R is smooth.

• 0 ≤ χM ≤ 1.

• χM(x) = 1 for x ∈ [−M,M ].

• χM(x) = 0 for |x| > 2M .

By Corollary 8.20, for any w,w′ ∈ Rd, z ∈ C we have the representation

Re (z · ϕ(w · x+ iw′ · x))χM(|w ·x|+m|w′ ·x|) =
m∑
j=0

pz,j((w+jw′)·x)χM(|w ·x|+m|w′ ·x|).

(8.25)

Proof of Lemma 8.18. Define X =
{
x ∈ Sd−1;m (|w · x|+ |w′ · x|) ≤M

}
. Observe that for

all x ∈ X ,

Re (ϕ(w · x+ iw′ · x)) = Re (ϕ(w · x+ iw′ · x))χM (m (|w · x|+ |w′ · x|)) .

Moreover, if j = 0, . . . ,m, then χM((w + jw′) · x) = 1, as well. By invoking Proposition

8.21 we deduce that for every j = 0, ...,m, there exists a pair of random variables Sj, Bj and a

constant cz,j > 0 depending only on j,m and z, such that

E [Sjψ ((w + jw′) · x−Bj)] =
cz,j
Mm

pz,j((w + jw′) · x)χM((w + jw′) · x), ∀x ∈ X,

Here we have used the fact that if pj is one of the degree m polynomials in the decomposition

(8.25), then there exist some constants C ′z,j, Cz,j > 0, for which

C ′z,jM
m ≤

M∫
−M

|p′′z,j| ≤
2M∫

−2M

|p′′z,j| ≤ Cz,jM
m.

We now set J to be a random index from the set {0, . . . ,m} with

P(J = j) =
c−1
z,j∑

j′
c−1
z,j′
.
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If we set cz,m = 1∑
j′
c−1
z,j′

, and S := SJ , B = BJ ,W = w + Jw′ it follows from (8.25) that

E [Sψ(W · x−B)] =
cz,m
Mm

m∑
j=0

pz,j((w + jw′) · x)χM((w + jw′) · x)

=
cz,m
Mm

Re (z · ϕ(w · x+ iw′ · x))χM (m (|w · x|+ |w′ · x|)) .

Finally since, by Corollary 8.20, cz,m depends continuously on z, a compactness argument

implies (8.24).

8.6 Hermite polynomials

Define the m’th Hermite polynomial by:

Hm(x) =
(−1)m√
m!

(
dm

dxm
e−

x2

2

)
e
x2

2 .

For ease of notion we also define H−1 ≡ 0. The Hermite polynomials may also be regarded as

the power series associated to the function F (t, x) = exp(tx− t2

2
). Indeed,

F (t, x) = exp

(
x2

2
− (x− t)2

2

)
= e

x2

2

∞∑
`=0

tm

m!

(
dm

dtm
e−

(x−t)2
2

) ∣∣∣
t=0

=
∞∑
m=0

tm√
m!
Hm(x). (8.26)

Observe that d
dx
F (t, x) = tF (t, x), so that, since H0 ≡ 1,

∞∑
m=1

tm√
(m− 1)!

Hm−1(x) =
∞∑
m=1

tm√
m!
H ′m(x),

and we deduce

H ′m =
√
mHm−1. (8.27)

Also d
dt
F (t, x) = (x− t)F (t, x) and a similar argument shows that√

m

m− 1
Hm(x) =

x√
m− 1

Hm−1(x)−Hm−2(x). (8.28)

Furthermore, we show that the family {Hm} satisfies the following orthogonality relation,

which we shall freely use.
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Lemma 8.22. Let X, Y ∼ N (0, 1) be jointly Gaussian with E[XY ] = ρ. Then

E [Hm(X)Hm′(Y )] = δm,m′ρ
m.

Proof. Fix s, t ∈ R. We have the following identity

E [F (s,X)F (t, Y )] = E [exp(sX + tY )] exp

(
−s

2 + t2

2

)
= est·ρ,

where in the second equality we have used the formula for the moment generating functions of

bi-variate Gaussians. In particular, we have

dm+m′

dsmdtm′
E [F (s,X)F (t, Y )]

∣∣∣
t=0,s=0

=
dm+m′

dsmdtm′
est·ρ

∣∣∣
t=0,s=0

.

By (8.26), the left hand side equals E [H`(X)H`′(Y )], while the right hand side is δm,m′ρm. The

proof is complete.

8.7 More general non-linearities

We now consider an arbitrary L-Lipschitz non-linearity ψ that is differentiable except at a finite

number of points and such that EX∼N (0,1)[(ψ
′(X))2] < +∞. In particular, with H1, H2, . . .

being the Hermite polynomials (normalized such that it forms an orthonormal basis) we have

that there exists a sequence of real numbers (a`) such that

ψ′ =
∑
`≥0

a`H` .

Our generalization of Theorem 8.8 now reads as follows:

Theorem 8.23. Under the above assumptions on ψ, there exists f ∈ Fk(ψ) with ‖f − y‖2 ≤
ε‖y‖2 provided that

k · d ≥ 16ω · L∑
`≥ log(2n)

2 log(1/γ)

a2
`

· n log(1/ε) .

In fact there is an efficient procedure that produces a random f ∈ Fk(ψ) with E[‖f − y‖2] ≤
ε‖y‖2 when (8.5) holds.

Proof. First we follow the proof of Lemma 8.10, with the only change being: (i) in (8.9) there

is an additiveO(δ) term (also now the condition on u is that u ·xi is not in the finite set of points

where ψ is not differentiable), and (ii) in (8.13) we use that |ψ′| ≤ L. We obtain that for u ∈ Rd
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there exists f ∈ F2(ψ) such that

n∑
i=1

yif(xi) ≥
1

2

∥∥∥∥∥
n∑
i=1

ψ′(u · xi)yixi
∥∥∥∥∥

2

, (8.29)

where the 1/2 compared to (8.10) is due to modification (i) above, and furthermore

n∑
i=1

f(xi)
2 ≤ 2ω · n · L

d
·

n∑
i=1

yif(xi) , (8.30)

where the added term L is due to modification (ii) above and the added 2 is due to (i).

Next we follow the proof of Lemma 8.11, noting that the matrix H is now defined by (recall

Lemma 8.22) Hi,j =
∑

`≥0 a
2
`(xi · xj)`+1, to obtain:

Eu∼N (0,In)

∥∥∥∥∥
n∑
i=1

ψ′(u · xi)yixi
∥∥∥∥∥

2

≥ 1

2

∑
`≥ log(2n)

2 log(1/γ)

a2
` ·

n∑
i=1

y2
i . (8.31)

In particular we obtain from (8.29) and (8.31) that (8.6) holds true with the term 1
10
·
√

log(1/γ)
log(2n)

replaced by 1
4

∑
`≥ log(2n)

2 log(1/γ)

a2
` , and from (8.30) that (8.7) holds true with ω replaced by 2ω · L.

We can thus conclude as we concluded Theorem 8.8 from Theorem 8.9.
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9
Community Detection and Percolation of

Information in a Geometric Setting

9.1 Introduction

Community detection in large networks is a central task in data science. It is often the case that

one gets to observe a large network, the links of which depends on some unknown, underly-

ing community structure. A natural task in this case is to detect and recover this community

structure to the best possible accuracy.

Perhaps the most well-studied model in this topic is the stochastic block model (SBM) where

a random graph whose vertex set is composed of several communities, {c1, ..., ck} is generated

in a way that every pair of nodes v, uwhich belong to communities c(u), c(v), will be connected

to each other with probability p = p(c(v), c(u)), hence with probability that only depends on the

respective communities, and otherwise independently. The task is to recover the communities

c(·) based on the graph (and assuming that the function p(·, ·) is known). The (unknown) asso-

ciation of nodes with communities is usually assumed to be random and independent between

different nodes. See [3] for an extensive review of this model.

A natural extension of the stochastic block model is the geometric random graph, where

the discrete set of communities is replaced by a metric space. More formally, given a metric

space (X, d), a function f : V → X from a vertex set V to the metric space and a function

ϕ : R+ → [0, 1], a graph is formed by connecting each pair of vertices u, v independently, with
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probability

p(u, v) := ϕ (d(f(u), f(v))) .

This model can sometimes mimic the behavior of real-world networks more accurately than the

stochastic block model. For example, a user in a social network may be represented as a point

in some linear space in a way that the coordinates correspond to attributes of her personality

and her geographic location. The likelihood of two persons being associated with each other in

the network will then depend on the proximity of several of these attributes. A flat community

structure may therefore be two simplistic to reflect these underlying attributes.

Therefore, a natural extension of the theory of stochastic block models would be to under-

stand under what conditions the geometric representation can be recovered by looking at the

graph. Our focus is on the case that the metric is defined over a symmetric space, such as the

Euclidean sphere in d-dimensions. By symmetry, we mean that the probability of two vertices

to be connected, given their locations, is invariant under a natural group acting on the space. We

are interested in the sparse regime where the expected degrees of the vertices do not converge

to infinity with the size of the graph. This is the (arguably) natural and most challenging regime

for the stochastic block model.

9.1.1 Inference in geometric random graphs

For the sake of simplicity, in what follows, we will assume that the metric space is the Euclidean

sphere, and our main theorems will be formulated in this setting; It will be straightforward,

yet technical, to generalize our results to more general symmetric space (see [92] for further

discussion on this point).

In order to construct our model, we need some notation. Let σ be the uniform probability

measure on Sd−1 and let ϕ : Sd−1 × Sd−1 → [0, 1], be of the form ϕ(x, y) = f(〈x, y〉) for some

f : [−1, 1]→ [0, 1]. Define the integral operator Aϕ : L2
(
Sd−1

)
→ L2

(
Sd−1

)
by

Aϕ(g)(x) =

∫
Sd−1

ϕ(x, y)g(y)dσ(y).

It is standard to show that Aϕ is a self-adjoint compact operator (see [137], for example) and so

has a discrete spectrum, except at 0. By definition, ϕ is invariant to rotations and so Aϕ com-

mutes with the Laplacian. It follows that the eigenfunctions of Aϕ are precisely the spherical

harmonics which we denote by {ψi}∞i=0. Thus, if λi(Aϕ) denotes the eigenvalue of ϕ corre-

sponding to ψi we have the following identity,

ϕ =
∞∑
i=0

λiψi ⊗ ψi. (9.1)
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In particular, ψ0 = 1 and for i = 1, ..., d, ψi are linear functionals such that, for x, y ∈ Sd−1,

d · 〈x, y〉 =
d∑
l=1

ψl(x)ψl(y). (9.2)

Note that in our notation the eigenvalues are indexed by the spherical harmonics, and are

therefore not necessarily in decreasing order. By rotational invariance it must hold that

λ(ϕ) := λ1 = ... = λd. (9.3)

Define ‖ϕ‖∞ = supx,y ϕ(x, y). We make the following, arguably natural, assumptions on the

function ϕ:

A1. There exist δ > 0 such that mini 6=1,...,d |λ(ϕ)− λi| > δ.

A2. Reordering the eigenvalues in decreasing order λl0 ≥ λl1 ≥ λl2 ≥ . . . there exists C > 0

such that for every i ≥ 0, λli ≤ C
(i+1)2 .

Let {Xi}ni=1 ∼ σ be a sequence of independently-sampled vectors, uniformly distributed

on Sd−1. Let G
(
n, 1

n
ϕ(Xi, Xj)

)
be the inhomogeneous Erdös-Rényi model where edges are

formed independently with probability 1
n
ϕ(Xi, Xj) and let A be the adjacency matrix of a ran-

dom graph drawn from G
(
n, 1

n
ϕ(Xi, Xj)

)
.

Definition 9.1. We say that the model is ε − reconstructible if, for all n large enough, there is

an algorithm which returns an n× n matrix A such that

1

n2

∑
i,j

|Ai,j −Xi ·Xj|2 ≤ ε.

Remark that, due the symmetry of the model, it is clear that the locations can only be

reconstructed up to an orthogonal transformation, which is equivalent to reconstruction of the

Gram matrix.

Theorem 9.2. For every ε > 0 there exists a constant C = C(ε, d), such that the model is

ε-reconstructible whenever

min
i 6=0,...,d

|λi − λ(ϕ)|2 ≥ C‖ϕ‖∞. (9.4)

Remark 9.3. Observe that, since the left hand side of condition (9.4) is 2-homogeneous, whereas

its right hand side is 1-homogeneous, we have that as long as the left hand side is nonzero, by

multiplication of the function ϕ by a large enough constant, the condition can be made to hold

true.
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Theorem 9.2 should be compared to the known bounds for recovery in the stochastic block

model (see [3]). In particular, it is illuminating to compare the SBM with two communities

to linear kernels in our model. In this case, both models are parameterized by two numbers

a, b. In the SBM these are the inter- and intra- communities probabilities and in our model, the

coefficients of the linear function. In the SBM, recovery of the communities depends on the

ratio (a−b)2

a+b
. The example below gives the same result for linear kernels, with a dimensional

affect, which typically makes reconstruction easier.

Example 1. Consider the linear kernel, ϕ(x, y) = a + b〈x, y〉, with |b| ≤ a. A calculation

shows that

λ0 = a

λ(ϕ) =
b

d
.

Applying our theorem, we show that the model is reconstructible whenever∣∣∣∣a− b

d

∣∣∣∣2 ≥ C · (a+ b).

Methods and related works. Our reconstruction theorem is based on a spectral method, via

the following steps:

1. We observe that by symmetry of our kernel, linear functions are among its eigenfunc-

tions. We show that the kernel matrix (hence the matrix obtained by evaluating the kernel

at pairs of the points (Xi)) will have a respective eigenvalues and eigenvectors which

approximate the ones of the continuous kernel.

2. Observing that the kernel matrix is the expectation of the adjacency matrix, we rely on a

matrix concentration inequality due to Le-Levina-Vershynin [157] to show that the eigen-

values of the former are close to the ones of the latter.

3. We use the Davis-Kahan theorem to show that the corresponding eigenvectors are also

close to each other.

The idea in Steps 2 and 3 is not new, and rather standard (see [157] and references therein).

Thus, the main technical contribution in proving our upper bound is in Step 1, where we prove

a bound for the convergence of eigenvectors of kernel matrices. So far, similar results have only

been obtained in the special case that the Kernel is positive-definite, see for instance [51].

The paper [235] considers kernels satisfying some Sobolev-type hypotheses similar to our as-

sumptions on ϕ (but gives results on the spectrum rather than the eigenvectors). Reconstruction

of the eigenspace has been considered in [230] for positive definite kernels in the dense regime,
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in [228] for random dot products graphs and in [14] in the dense and relatively sparse regimes

again for kernels satisfying some Sobolev-type hypotheses.

Let us also mention other works which augmented the SBM with geometric information.

The paper [93] considers the problem of discrete community recovery when presented with

informative node covariates, inspired by the spiked covariance model. The authors derived a

sharp threshold for recovery by introducing a spectral-like algorithm. However, the model is

rather different than the one we propose in which the community structure is continuous.

A model which is slightly closer to the one we consider appears in [121]. In this model,

communities are still discrete but the edge connectivity depends continuously on the latent po-

sitions of nodes on some d dimensional sphere. In such a model, recovery of the communities

may be reduced to more combinatorial arguments. Indeed, the number of common neighbors

can serve as an indicator for checking whether two nodes come from the same community. A

similar idea was previously explored in [56], where a triangle count was used to establish a

threshold for detecting latent geometry in random geometric graphs.

9.1.2 Percolation of geometric information in trees

The above theorem gives an upper bound for the threshold for reconstruction. The question of

finding respective lower bounds, in the stochastic block model, is usually reduced to a related

but somewhat simpler model of percolation of information on trees. The idea is that in the sparse

regime, the neighborhood of each node in the graph is usually a tree, and it can be shown that

recovering the community of a specific node based on observation of the entire graph, is more

difficult than the recovery of its location based on knowledge of the community association of

the leaves of a tree rooted at this node. For a formal derivation of this reduction (in the case of

the SBM), we refer to [3].

This gives rise to the following model, first described by Mossel and Peres [186] (see also

[184]): Consider a q-ary tree T = (V,E) of depth k, rooted at r ∈ V . Suppose that each node

in V is associated with a label ` : V → {1, .., k} in the following way: The root r is assigned

with some label and then, iteratively, each node is assigned with its direct ancestor’s label with

probability p and with a uniformly picked label with probability 1−p (independent between the

nodes at each level). The goal is then to detect the assignment of the root based on observation

of the leaves.

Let us now suggest an extension of this model to the geometric setting. We fix a Markov

kernel ϕ(x, y) = f(〈x, y〉) such that
∫
Sn−1 ϕ(x, y)dσ(y) = 1 for all x ∈ Sd−1. We define

g : T → Sd−1 in the following way. For the root r, g(r) is picked according to the uniform

measure. Iteratively, given that g(v) is already set for all nodes v at the `-th level, we pick the

values g(u) for nodes u at the (` + 1)th level independently, so that if u is a direct descendant

of v, the label g(u) is distributed according to the law ϕ(g(v), ·)dσ.
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Denote by Tk ⊂ V the set of nodes at depth k, and define by µk the conditional distribution

of g(r) given (g(v))v∈Tk . We say that the model has positive information flow if

lim
k→∞

E [TV(µk, σ)] > 0.

Remark that by symmetry, we have

E [TV(µk, σ)] = E [TV(µk, σ)|g(r) = e1]

where r is the root and e1 is the north pole.

Our second objective in this work is to make the first steps towards understanding under

which conditions the model has positive information flow, and in particular, our focus is on

providing nontrivial sufficient conditions on q, ϕ for the above limit to be equal to zero.

Let us first outline a natural sufficient condition for the information flow to be positive

which, as we later show, turns out to be sharp in the case of Gaussian kernels. Consider the

following simple observable,

Zk :=
1

|Tk|
∑
v∈Tk

g(v).

By Bayes’ rule, we clearly have that the model has positive information flow if (but not only if)

lim inf
k→∞

E[〈Zk, e1〉|g(r) = e1]√
Var [〈Zk, e1〉| g(r) = e1]

> 0. (9.5)

This gives rise to the parameter

λ(ϕ) :=

∫
Sd−1

〈x, e1〉ϕ(e1, x)dσ(x),

which is the eigenvalue corresponding to linear harmonics. By linearity of expectation, we have

E[〈Zk, e1〉|g(r) = e1] = λ(ϕ)k.

For two nodes u, v ∈ T define by c(u, v) the deepest common ancestor of u, v and by `(u, v) its
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level. A calculation gives

Var [〈Zk, e1〉| g(r) = e1] =
1

q2k

∑
u,v∈Tk

E [g(v)1g(u)1|g(r) = e1]− λ(ϕ)2k

=
1

q2k

∑
u,v∈Tk

E [E[g(v)1|g(c(u, v))]E[g(u)1|g(c(u, v))]|g(r) = e1]− λ(ϕ)2k

=
1

q2k

∑
u,v∈Tk

E
[
g(c(u, v))2

1|g(r) = e1

]
λ(ϕ)2(k−`(u,v)) − λ(ϕ)2k

≤ 1

q2k

∑
u,v∈Tk

λ(ϕ)2(k−`(u,v)) − λ(ϕ)2k

=
λ(ϕ)2k

q2k

∑
u,v∈Tk

λ(ϕ)−2`(u,v) − λ(ϕ)2k

=
λ(ϕ)2k

q2k

k∑
`=0

q`q2(k−`)λ(ϕ)−2` − λ(ϕ)2k = λ(ϕ)2k

k∑
`=1

(
qλ(ϕ)2

)−`
.

This gives a sufficient condition for (9.5) to hold true, concluding:

Claim 9.4. The condition qλ(ϕ)2 > 1 is sufficient for the model to have positive percolation of

information.

We will refer to this as the Kesten-Stigum (KS) bound.

We now turn to describe our lower bounds. For the Gaussian kernel, we give a lower bound

which misses by a factor of 2 from giving a matching bound to the KS bound. To describe the

Gaussian kernel, fix β > 0, let X be a normal random variable with law N (0, β) and suppose

that ϕ : S1 × S1 → R is such that

ϕ(x, ·) is the density of (x+X)mod2π, (9.6)

where we identify S1 with the interval [0, 2π). We have the following result.

Theorem 9.5. For the Gaussian kernel defined above, there is zero information flow whenever

qλ(ϕ) < 1.

Related results in the Gaussian setting. In the discrete setting,an analogous result was ob-

tained in [183]. In fact, our method of proof is closely related. We use the inherent symmetries

of the spherical kernels to decouple the values of g(r) and g(v), where v is some vertex which

is sufficiently distant from r. This is same idea of Proposition 10 in [183] which uses a decom-

position of the transition matrix to deduce a similar conclusion.

Another related result appears in [187]. In the paper the authors consider a broadcast model

on a binary tree with a Gaussian Markov random field and obtain a result in the same spirit as
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the one above. However, since the random field they consider is real valued, as opposed to our

process which is constrained to the circle, the method of proof is quite different.

In the general case, we were unable to give a corresponding bound, nevertheless, using the

same ideas, we are able to give some nontrivial sufficient condition for zero flow of information

for some q > 1, formulated in terms of the eigenvalues of the kernel. To our knowledge,

this is the first known result in this direction. In order to formulate our result, we need some

definitions.

We begin with a slightly generalized notion of a q-ary tree.

Definition 9.6. Let q > 1, we say that T is a tree of growth at most q if for every k ∈ N,

|Tk| ≤
⌈
qk
⌉
.

Now, recall that ϕ(x, y) = f(〈x, y〉). Our bound is proven under the following assumptions

on the kernel.

• f is monotone.

• f is continuous.

• λ(ϕ) > 0 and for every i ≥ 1, |λi| ≤ λ(ϕ).

We obtain the following result.

Theorem 9.7. Let ϕ satisfy the assumptions above and let T be a tree of growth at most q.

There exists a universal constant c > 0, such that if

q ≤

1− c ln(λ(ϕ))(1− λ(ϕ))2

ln
(
λ(ϕ)(1−λ(ϕ))

f(1)

)
−1

then the model has zero percolation of information.

9.2 The upper bound: Proof of Theorem 9.2

Recall that

ϕ =
∞∑
k=0

λkψk ⊗ ψk,

with the eigenvalues λk indexed by the spherical harmonics. Define the random matrices

Mn,Ψn by

(Mn)i,j =
1

n
ϕ(Xi, Xj), (Ψn)i,k =

1√
n
ψk(Xi).
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Note that Mn is an n× n matrix, while Ψn, has infinitely many columns. Furthermore, denote

by Λ the diagonal matrix diag{λi}∞i=0. Then

(Mn)i,j =
1

n

∞∑
k=0

λkψk(Xi)ψk(Xj) = (ΨnΛΨT
n )i,j.

For r ∈ N we also denote

ϕr :=
r∑

k=0

λkψk ⊗ ψk,

the finite rank approximation of ϕ, Λr = diag{λk}rk=0, and Ψr
n the sub-matrix of Ψn composed

of its first r columns. Finally, denote

M r
n = Ψr

nΛr(Ψr
n)T .

As before, let A be an adjacency matrix drawn from G
(
n, 1

n
ϕ(Xi, Xj)

)
so that EA = Mn. Our

goal is to recover Ψd+1
n from the observed A. The first step is to recover Ψd+1

n from Mn. We

begin by showing that the columns of Ψr
n are, up to a small additive error, eigenvectors of M r

n.

To this end, denote

En,r := (Ψr
n)TΨr

n − Idr,

C(n, r) = ‖En,r‖2
op, and K = maxi λi.

Lemma 9.8. Let ui be the i’th column of Ψn and let η > 0. Then

‖M r
nui − λiui‖2

2 ≤ K2(
√
C(n, r) + 1)C(n, r).

Moreover, whenever n ≥ l(r) log(2r/η), we have with probability larger than 1− η,

C(n, r) ≤ 4l(r) log(2r/η)

n
.

where l(r) only depends on r and on the dimension.

Proof. Let ei ∈ Rr be the i’th standard unit vector so that ui = Ψr
nei. So,

(Ψr
n)Tui = (Ψr

n)TΨr
nei = (Idr + (Ψr

n)TΨr
n − Idr)ei = ei + En,rei.

We then have

M r
nui = Ψr

nΛr(Ψr
n)Tui = Ψr

nΛrei + Ψr
nΛrEn,rei

= λiΨ
r
nei + Ψr

nΛrEn,rei = λiui + Ψr
nΛrEn,rei.
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To bound the error, we estimate ‖M r
nui − λiui‖2

2 = ‖Ψr
nΛrEn,rei‖2

2 as

〈ΛrEn,rei, (Ψ
r
n)TΨr

nΛrEn,rei〉 = 〈ΛrEn,rei, En,rΛ
rEn,rei〉+ ‖ΛrEn,rei‖2

2

≤
(√

C(n, r) + 1
)
‖ΛrEn,rei‖2

2 ≤ K2
(√

C(n, r) + 1
)
C(n, r).

It remains to boundC(n, r). LetXr
i = (ψ0(Xi), . . . , ψr−1(Xi)) stand for the i’th row of Ψr

n.

Then, En,r = 1
n

∑n
i=1

(
(Xr

i )TXr
i − Idr

)
, is a sum of independent, centered random matrices.

We have

σ2
n,r :=

∥∥∥∥∥∥E
(

1

n

n∑
i=1

(
(Xr

i )TXr
i − Idr

))2
∥∥∥∥∥∥
op

=
1

n

∥∥∥E ((Xr
1)TXr

1 − Idr
)2
∥∥∥
op

Furthermore, the norm of the matrices can be bounded by∥∥∥∥ 1

n

(
(Xr

1)TXr
1 − Idr

)∥∥∥∥
op

=
1

n
max(1, ‖Xr

1‖2
2 − 1)

≤ 1

n
max

(
1,

∥∥∥∥∥
r∑
i=0

ψ2
i

∥∥∥∥∥
∞

− 1

)
.

Note that the right hand side of the two last displays are of the form 1
n
l(r) where l(r) depends

only on r and d (not not on n). Applying matrix Bernstein ( [233, Theorem 6.1]) then gives

P
(
‖En,r‖op ≥ t

)
≤ 2r exp

(
− n

2l(r)

t2

1 + t/3

)
,

where l(r) depends only on r and d. Choose now t0 = 4l(r) log(2r/η)
n

. As long as n ≥ l(r) log(2r/η),

t0 ≤ 4, and the above bound may be refined to

P
(
‖En,r‖op ≥ t0

)
≤ 2r exp

(
− n

l(r)

t20
7

)
.

With the above conditions, it may now be verified that 2r exp
(
− n
l(r)

t20
7

)
≤ η, and the proof is

complete.

We now show that as r increases, the eigenvectors of M r
n converge to those of Mn. Order

the eigenvalues in decreasing order λl0 ≥ λl1 ≥ λl2 ≥ . . . and let Λ>r =
∑∞

i=r λ
2
li

. Note

that it follows from assumption A2 that Λ>r = O(r−3). We will denote by λi(Mn), λi(M
r
n)

the respective eigenvalues of Mn and M r
n, ordered in a decreasing way, and by vi(Mn), vi(M

r
n)
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their corresponding unit eigenvectors. Suppose that s is such that

λ(ϕ) = λls+1 = · · · = λls+d . (9.7)

Moreover, define

Vn := span(vls+1(Mn), ..., vls+d(Mn)), V r
n := span

(
vls+1(M r

n), ..., vls+d(M
r
n)
)
.

The next lemma shows that Vn is close to V r
n whenever both n and r are large enough.

Lemma 9.9. For all n, r, let Pn,r be the orthogonal projection onto V r
n . Then, for all η > 0

there exist constants n0, r0 such that for all n > n0 and r > r0, we have with probability at

least 1− η that, for all w ∈ Vn,

‖w − Pn,rw‖2 ≤
4C

ηδ2r3
.

where δ and C are the constants from Assumption A1 and Assumption A2.

Proof. We have

E ‖Mn −M r
n‖2

F =
∑
i,j

E(Mn −M r
n)2
i,j

=
∑
i,j

1

n2
E

(
∞∑
k=r

λkψk(Xi)ψk(Xj)

)2

= Ex,y∼σ

(
∞∑
k=r

λkψk(x)ψk(y)

)2

=
∞∑
k=r

λ2
k = Λ>r.

Applying Markov’s inequality gives that with probability 1− η

‖Mn −M r
n‖2

F ≤
Λ>r

η
≤ C

ηr3
. (9.8)

Theorem 1 in [235] shows that there exists n large enough such that with probability larger than

1− η, one has

|λi(Mn)− λls+i | ≤ δ/4,

with δ being the constant from Assumption A1. It follows that

λls+1(Mn), ..., λls+d(Mn) ∈
[
λ(ϕ)− δ

4
, λ(ϕ) +

δ

4

]
, (9.9)

while by (9.8) and Weyl’s Perturbation Theorem (e.g., [36, Corollary III.2.6]), for r large
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enough with probability 1− η,

λi(M
r
n) /∈

[
λ(ϕ)− 3δ

4
, λ(ϕ) +

3δ

4

]
, for i 6= ls+1, . . . ls+d. (9.10)

Combining (9.8), (9.9) and (9.10) it follows from the classical Davis-Kahan theorem (see e.g.

[36, Section VII.3]) that with probability at-least 1− 2η, for every w ∈ Vn,

‖w − Pn,rw‖2
2 ≤

4C

ηδ2r3
.

Denote

Gn :=
1

d

d∑
k=1

vls+k(Mn)vls+k(Mn)T , (G′n)i,j =
1

n
〈Xi, Xj〉.

A combination of the last two lemmas produces the following:

Theorem 9.10. One has

‖Gn −G′n‖F → 0

in probability, as n→∞.

Proof. Denote

Gr
n :=

1

d

d∑
k=1

vls+k(M
r
n)(vls+k(M

r
n))T .

Then

‖Gn −G′n‖F ≤ ‖Gr
n −G′n‖F + ‖Gn −Gr

n‖F

We will show that the two terms on the right hand side converge to zero. Let r(n) be a function

converging to infinity slowly enough so that C(n, r) → 0, for the constant C(n, r) defined in

Lemma 9.8. Taking η = η(n) to converge to zero slowly enough and applying Lemma 9.8,

gives for all 2 ≤ i ≤ d+ 1,

‖(M r
n − λ(ϕ))ui‖2

2 ≤ εn

with ui the i’th column of Ψr
n and where εn → 0 as n→∞. Now, if we write

ui =
∞∑
j=0

αi,jvj(M
r
n),

the last inequality becomes∑
j

|λj(M r
n)− λ(ϕ)|2α2

i,j =
∑
j

|(M r
n − λ(ϕ))vj(M

r
n)|2α2

i,j ≤ εn, ∀2 ≤ i ≤ d+ 1.
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Using Equation (9.10), we have

∑
j /∈{ls+1,..,ls+d}

α2
i,j ≤

4εn
δ
→ 0, (9.11)

and thus ∥∥∥∥∥ui −
d∑

k=1

αi,ls+kvls+k(M
r
n)

∥∥∥∥∥
2

2

→ 0, ∀2 ≤ i ≤ d+ 1.

Define a d× d-matrix B by Bi,j = αi,ls+j . Then we can rewrite the above as

∥∥(u1, . . . , ud)− (vls+1(M r
n), . . . , vls+d(M

r
n)) ·B

∥∥2

F
→ 0.

Now, since for two n×dmatricesR, S we have ‖RRT −SST‖F ≤ (‖R‖op+‖S‖op)‖R−S‖F .

It follows that

‖G′n − (vls+1(M r
n), . . . , vls+d(M

r
n))BBT (vls+1(M r

n), . . . , vls+d(M
r
n))T‖F → 0. (9.12)

Observe that

Bi,j = 〈ui, uj〉 −
∑

k/∈{ls+1,..,ls+d}

αi,kαj,k,

implying that

|(BBT )i,j − Ei,j| ≤
√ ∑

k/∈{ls+1,..,ls+d}

α2
i,k

∑
k/∈{ls+1,..,ls+d}

α2
j,k

(9.11)−→ 0.

where E = En,r. Consequently we have

‖BBT − Idd‖op ≤ C(n, r)→ 0,

which implies that

‖vls+1(M r
n), . . . , vls+d(M

r
n))(BBT − Idd)(vls+1(M r

n), . . . , vls+d(M
r
n))T‖2

F → 0.

Combining with (9.12) finally yields

‖G′n −Gr
n‖F → 0.

in probability, as n→∞.

If P is the orthogonal projection onto V r
n = span(vls+1(M r

n), . . . , vls+d(M
r
n)), and Q is the

orthogonal projection onto span(vls+1(Mn), . . . , vls+d(Mn)), then Lemma 9.9 shows that for all

η > 0, with probability at least 1 − η, as n → ∞ (and r = n
1
2d → ∞), we have for every unit
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vector v

|(P − Id)Qv| ≤ εn (9.13)

with some εn → 0. By symmetry, we also have for every unit vector v that

|(Q− Id)Pv| ≤ εn

(this uses that fact that both P and Q are projections into subspaces of the same dimension).

The last two inequalities easily yield that ‖P −Q‖op ≤ εn. Since this is true for every η > 0, it

follows that

‖Gn −Gr
n‖F → 0,

in probability, as n→∞.

Now, after establishing that Mn is close to Ψd+1
n , the second step is to recover Mn (and

therefore Ψd+1
n ), from the observed A. For the proof we will need the following instance of the

Davis-Kahan theorem.

Theorem 9.11 ( [249, Theorem 2]). Let X, Y be symmetric matrices with eigenvalues λ0 ≥
· · · ≥ λp resp. λ̂0 ≥ · · · ≥ λ̂p with corresponding orthonormal eigenvectors v0, . . . , vp resp.

v̂0, . . . , v̂p. Let V = (vs+1, . . . , vs+d) and V̂ = (v̂s+1, . . . , v̂s+d). Then there exists an orthogonal

d× d matrix R such that

‖V̂ R− V ‖F ≤
23/2 min(d1/2‖Y −X‖op, ‖Y −X‖F )

min(λs − λs+1, λs+d − λs+d+1)
.

Our main tool to pass from the expectation of the adjacency matrix to the matrix itself

is the following result regarding concentration of random matrices, which follows from [157,

Theorem 5.1].

Theorem 9.12. LetA be the adjacency matrix of a random graph drawn fromG
(
n, 1

n
ϕ(Xi, Xj)

)
.

Consider any subset of at most 10n/‖ϕ‖∞ vertices, and reduce the weights of the edges inci-

dent to those vertices in an arbitrary way but so that all degrees of the new (weighted) network

become bounded by 2‖ϕ‖∞. Then with probability at least 1− n−1 the adjacency matrix A′ of

the new weighted graph satisfies

‖A′ −Mn‖ ≤ C
√
‖ϕ‖∞.

We can now prove the main reconstruction theorem.

Proof of Theorem 9.2. Let A be the adjacency matrix of a random graph drawn from the model

G
(
n, 1

n
ϕ(Xi, Xj)

)
. We first claim that with probability tending to 1, there exists a re-weighted
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adjacency matrix A′ as defined in Theorem 9.12. Indeed by Chernoff inequality for have for all

i ∈ [n],

P(di > 1.5‖ϕ‖∞) ≤ e−cn

and therefore, by Markov’s inequality, the expectation of the number of vertices whose degree

exceeds 2‖ϕ‖∞ goes to zero with n.

Denote by λ′0 ≥ λ′1 ≥ . . . its eigenvalues and by v′0, v
′
1, . . . the corresponding orthonormal

eigenvectors of A′. Let Y = (v′ls+1
, . . . , v′ls+d). By Theorem 9.11 there exists an R ∈ O(d) such

that

∥∥(vls+1(Mn), ..., vls+d(Mn)
)
− Y R

∥∥
F
≤ 23/2d1/2‖Mn − A′‖op

mini 6=1,...,d |λi − λ(ϕ)| .

Hence by Theorem 9.12 we have

∥∥(vls+1(Mn), ..., vls+d(Mn)
)
− Y R

∥∥
F
≤ C
√
d ·

√
‖ϕ‖∞

mini 6=1,...,d |λi − λ(ϕ)| ,

with probability 1− n−1. It follows that

∥∥Gn − Y Y T
∥∥
F
≤ C
√
d ·

√
‖ϕ‖∞

mini 6=1,...,d |λi − λ(ϕ)|

Combining this with Theorem 9.10 yields

∥∥G′n − Y Y T
∥∥
F
≤ C
√
d ·

√
‖ϕ‖∞

mini 6=1,...,d |λi − λ(ϕ)| ,

So,
1

n2

∑
i,j

∣∣Xi ·Xj − (nY Y T )i,j
∣∣2 ≤ Cd

‖ϕ‖∞
mini 6=1,...,d |λi − λ(ϕ)|2

which gives the desired reconstruction bound.

9.3 Lower bounds

Our approach to proving lower bounds will be to exploit some symmetries which are inherent

to well behaved kernel functions. We thus make the following definition:

Definition 9.13 (DPS property). Let µ be a probability measure on Sd−1, and let w ∈ Sd−1.

We say that µ has the Diminishing Post-translation Symmetry (DPS) around w property with
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constant ε, if there exists a decomposition,

µ = (1− ε)µw + εµsw.

Here µsw is a probability measure, invariant to reflections with respect to w⊥. In other words, if

R = Id − 2wwT , R∗µsw = µsw. For such a measure we denote µ ∈ DPSw(ε).

If instead µ is a measure on (Sd−1)|Tk|, we say that µ ∈ DPSkw(ε) if a similar decomposition

exists but now the reflections should be applied to each coordinate separately.

We now explain the connection between the DPS property and percolation of information

in trees. For this, let us recall the random function g : T → Sd−1, introduced in Section 9.1.2,

which assigns to the root, r, a uniformly random value and for any other u ∈ T , the label g(u)

is distributed according to ϕ(g(parent(u)), ·)dσ.

Lemma 9.14. Suppose that there exist a sequence (pk)k with limk→∞ pk = 1 such that for every

w, x0 ∈ Sd−1 and every k > 0,

Law((g(v))v∈Tk |g(r) = x0) ∈ DPSkw(pk).

Then there is zero percolation of information along T .

Proof. Denote X = g(r) and Y = g(v)v∈Tk and let ρX|Y be the density of X|Y with respect to

σ. Our aim is to show that EY [TV(X|Y, σ)] = o(1). We first claim that it is enough to show

that for all x, x′ ∈ Sd−1 and all δ > 0 one has,

P
(
ρX|Y (x)

ρX|Y (x′)
− 1 ≤ δ

∣∣∣∣X = x

)
= 1− o(1). (9.14)

Indeed, let H =
{
ρX|Y (x)

ρX|Y (x′)
− 1 ≤ δ

}
. Note that, by Bayes’ rule,

ρX|Y (x)

ρX|Y (x′)
=
ρY |X=x(Y )

ρY |X=x′(Y )
.

Let x ∈ Sd−1 be some fixed point and let x′ be uniformly distributed is Sd−1 and independent

from Y . We will use Ex′ to denote integration with respect to x′, which has density ρX . Simi-

larly, EY stands for integration with respect to the density ρY of Y and Ex′,Y is with respect to

the product ρX · ρY . The symbol P will always mean probability over x′ and Y .

As a consequence of the assumption (9.14), there exists a function, as long as k, is large

enough we have,

P (H|X = x) = 1− δ.
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as long as k is large enough. For any measurable set A, we denote the projection:

ΠYA = {y ∈ Y : (x′, y) ∈ A for some x′ ∈ X}.

Define now the set

H ′ := {(x′, y)|(x′, y) ∈ H and Ex′ [1H(·, y)] ≥ 1− 4δ}.

In particular, for every y ∈ ΠYH
′,

Ex′ [1H(·, y)] ≥ 1− 4δ,

and by Fubini’s theorem, P (H ′|X = x) ≥ 1− 4δ.

Consider the random variables α := α(Y ) =
ρY |X=x(Y )

ρY (Y )
and β := β(x′, Y ) =

ρY |X=x′ (Y )

ρY (Y )
. By

definition of H , we have

(1− δ)1Hα ≤ 1Hβ. (9.15)

Moreover, for almost every Y ,

Ex′ [β] =
1

ρY (Y )

∫
ρY |X=x′(Y )ρX(x′) =

1

ρY (Y )
ρY (Y ) = 1.

So,

(1− δ)(1− 4δ)EY [α1ΠYH′ ] ≤ (1− δ)EY [αEx′ [1H′ ]] ≤ Ex′,Y [β1H′ ] ≤ Ex′,Y [β] = 1.

Observe that EY [α1ΠYH′ ] = P (ΠYH
′|X = x) = 1 − o(1), where the second equality is a

consequence of Fubini’s theorem. Hence, let us write h1(δ), so that

1− h1(δ) = (1− δ)(1− 4δ)EY [α1ΠYH′ ] ≤ (1− δ)Ex′,Y [α1H′ ] .

Markov’s inequality then implies,

P
(
β1H′ ≥ (1− δ)α1H′ +

√
h1(δ)

)
≤ Ex′,Y [β1H′ ]− (1− δ)Ex′,Y [α1H′ ]√

h1(δ)
≤
√
h1(δ).

(9.16)

Now, we integrate over x′ to obtain,

(1− δ)(1− 4δ)α1ΠYH′ ≤ (1− δ)αEx′ [1H′ ] ≤ Ex′ [β1H′ ] ≤ 1,

which implies

α1H′ ≤
1

(1− δ)(1− 4δ)
. (9.17)
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Keeping in mind the previous displays, we may choose h2(δ), which satisfies lim
δ→0

h2(δ) = 0,

α1H′ ≤ 1 + h2(δ) and Ex′,Y [α1H′ ] ≥ 1− h2(δ).

So, an application of the the reverse Markov’s inequality for bounded and positive random

variables shows,

P
(
α1H′ ≥ 1−

√
h2(δ)

)
≥ Ex′,Y [α1H′ ]− (1−

√
h2(δ))

1 + h2(δ)− (1−
√
h2(δ))

≥ 1− h2(δ)− (1−
√
h2(δ))

1 + h2(δ)− (1−
√
h2(δ))

=

√
h2(δ)− h2(δ)√
h2(δ) + h2(δ)

. (9.18)

Note that the as δ → 0 the RHS goes to 1. Thus, by combining the above displays, there exists

a function h, which satisfies lim
δ→0

h(δ) = 0 and some H ′′ ⊂ H ′, with P (H ′) ≥ 1 − h(δ), such

that, by (9.17) and (9.18),

1H′′ |α− 1| ≤ h(δ),

which implies, together with (9.15) and (9.16)

1H′′|α− β| ≤ h(δ).

This then gives

1H′′|1− β| ≤ 2h(δ).

We can thus conclude,

EY TV (X|Y,X) = EY,x′ [|β − 1|] = 2EY,x′ [(1− β)1β≤1]

≤ 2EY,x′ [(1− β)1β≤11H′′ ] + 1− P (H ′′)

= 2EY,x′ [|1− β|1H′′ ] + h(δ)

≤ 5h(δ).

Take now δ → 0 to get EY TV (X|Y,X)→ 0.

Thus, we may assume towards a contradiction that there exist x, x′ ∈ Sd−1 and a set F ⊂
(Sd−1)|Tk|, such that

P (Y ∈ F |X = x) ≥ δ, (9.19)

and under {Y ∈ F},
ρX|Y (x)

ρX|Y (x′)
≥ 1 + δ, (9.20)

for some constant δ > 0.
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Let w ∈ Sd−1 be such that the reflection R := Id − 2wwT satisfies Rx = x′. Under our

assumption, there exists an event Ak, which satisfies

P(Ak|X = x) = 1− o(1)

and such that Y |(X = x,Ak) is R-invariant. By (9.19), we also have

P(Ak|X = x, Y ∈ F ) = 1− o(1),

and thus there exists y ∈ F such that

P(Ak|X = x, Y = y) = 1− o(1). (9.21)

By continuity, we can make sense of conditioning on the zero probability event E :=
{
X =

x, Y ∈ {y,Ry}
}

. Note that we have by symmetry and since y ∈ F ,

Y = y ⇒ 1 + δ ≤ ρX|Y (x)

ρX|Y (x′)
=
P(Y = y|E)

P(Y = Ry|E)
. (9.22)

On the other hand, we have by definition of Ak,

P(Y = Ry|E,Ak) = P(Y = y|E,Ak),

which implies that

P(Y = Ry|E) ≥ P
(
{Y = Ry} ∩ Ak|E

)
= P

(
{Y = y} ∩ Ak|E

)
≥ P(Y = y|E)(1− o(1))

which contradicts (9.22). The proof is complete.

9.3.1 The Gaussian case

Our aim is to show that certain classes of kernel functions satisfy the DPS condition. We begin

by considering the case where the kernel ϕ is Gaussian, as in (9.6). In this case, the function

g may be defined as follows. Let T be a q-ary tree. To each edge e ∈ E(T ) we associate a

Brownian motion (Be(t))t∈(0,1) of rate β such that for every node v ∈ V we have

g(v) =
∑
e∈P (v)

Be(1) mod2π

where P (v) denotes the shortest path from the root to v.

251



For every node v ∈ Tk let us now consider the Brownian motion (Bv(t))
k
t=0 defined by

concatenating the Brownian motions Be along the edges e ∈ P (v). Define by Ev the event that

the image of Bvmodπ contains the entire interval [0, π), and define Ek =
⋂
v∈Tk Ev. Our lower

bound relies on the following observation.

Claim 9.15. Fix v ∈ Tk and set pk := P(Ek). Then, for every θ, x0 ∈ S1, Law(g(v)|g(r) =

x0) ∈ DPSkθ(pk).

Proof. Fix θ ∈ [0, π). Given the event Ev, we have almost surely that there exists a time tv ≤ k

such that Bv(tv) ∈ {θ − π, θ}. By symmetry and by the Markov property of Brownian motion,

we have that the distribution of g(v) conditioned on the event {Bv(tv) = θ, ∀v} is symmetric

around θ. Thus, by considering (Bv(t))v∈Tk , under the event {tv ≤ k|v ∈ Tk} we get that for

any x0, Law((g(v))v∈Tk |g(r) = x0) is symmetric around θ. So,

Law((g(v))v∈Tk |g(r) = x0) ∈ DPSkθ(pk).

We will also need the following bound, shown for example in [107].

Lemma 9.16. Let B(t) be a Brownian motion of rate β on the unit circle. Then,

P(Image(B(s)modπ)0≤s≤t = [0, π)) ≥ 1− Ce−tβ/2.

We are now in a position to prove Theorem 9.5.

Proof of Theorem 9.5. Lemma 9.16 immediately implies that for all v ∈ Tk,

P(Ev) ≥ 1− Ce−kβ/2.

On the other hand, a calculation gives λ(ϕ) = E[cos(B1)] = e−β/2. Thus, applying a union

bound implies that for some constant C > 0, P(Ek) ≥ 1− Cqkλ(ϕ)k. Hence, by Claim 9.15,

Law((g(v))v∈Tk |g(r) = x0) ∈ DPSw(1− Cqkλ(ϕ)k).

The result is now a direct consequence of Lemma 9.14.

In the next section we generalize the above ideas and obtain a corresponding bound which

holds for distributions other than the Gaussian one.
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9.3.2 The general case

On symmetric functions

We begin this section with simple criterion to determine whether a measure belongs to some

DPS class. In the sequel, for w ∈ Sd−1, we denote,

H+
w = {x ∈ Sd−1|〈x,w〉 ≥ 0} and H−w = {x ∈ Sd−1|〈x,w〉 < 0}.

Lemma 9.17. Let f : [−1, 1]→ R+ satisfy the assumptions of Theorem 9.7 and let y ∈ Sd−1. If

µ = f(〈·, y〉)dσ, then for any w ∈ Sd−1, µ ∈ DPSw(2 · pw), where pw = min (µ(H+
w ), µ(H−w )).

Proof. Without loss of generality let us assume that y ∈ H+
w . Monotonicity of f implies

µ(H+
w ) ≥ µ(H−w ). Now, if R = Id − 2wwT is the reflection matrix with respect to w⊥, then we

have for any x ∈ H−w ,

f(〈x, y〉) ≤ f(〈Rx, y〉).

This follows since 〈x, y〉 ≤ 〈Rx, y〉.

Let us now define the measure µ̃sw such that

dµ̃sw
dσ

(x) =

f(〈x, y〉) if x ∈ H−w
f(〈Rx, y〉) if x ∈ H+

w .

µ̃sw is clearly R-invariant and the above observation shows that µ̃sw(Sd−1) ≤ 1. We can thus

define µ̃w = µ− µ̃sw.

To obtain a decomposition, define µsw = µ̃sw
µ̃sw(Sd−1)

and µw = µ̃w
µ̃w(Sd−1)

, for which

µ = (1− µ̃sw(Sd−1))µw + µ̃sw(Sd−1)µsw.

The proof is concluded by noting µ̃sw(Sd−1) = 2µ(H−w ).

Our main object of interest will be the measure µϕ(y) which, for a fixed y, is defined by

µϕ(y) := ϕ(x, y)dσ(x) = f(〈x, y〉)dσ(x). (9.23)

Let us now denote,

βd(t) :=
Γ(d

2
)

Γ(d−1
2

)
(1− t2)(d−3)/2,

which is the marginal of the uniform distribution on the sphere. We now show that the spectral

gap of ϕ may determine the DPS properties of µϕ(y).
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Lemma 9.18. Let w ∈ Sd−1 and suppose that f is monotone. If |〈w, y〉| ≤ 1−λ(ϕ)

16
√
d

, then

µϕ(y) ∈ DPSw

(
1− λ(ϕ)

35

)
.

Proof. Assume W.L.O.G. that 〈y, w〉 > 0. By Lemma 9.17 it will be enough to bound
∫
H−w

µϕ(y)

from below. Let X ∼ µϕ(y) and define Z = 〈X, y〉. We have E [Z] = λ(ϕ) and by Markov’s

inequality,

P
(
Z ≤ 1 + λ(ϕ)

2

)
= P

(
Z + 1 ≤ 1 + λ(ϕ)

2
+ 1

)
≥ 1− 2(λ(ϕ) + 1)

3 + λ(ϕ)
≥ 1− λ(ϕ)

4
.

For t ∈ [−1, 1], set St = {x ∈ Sd−1|〈x, y〉 = t} and let Hd−2 stand for d − 2-dimensional

Hausdorff measure. To bound
∫
H−w

µϕ(y) we would first like to estimate H
d−2(St∩H−w )
Hd−2(St)

.

We know that 0 ≤ 〈w, y〉 ≤ 1−λ(ϕ)

16
√
d

. Denote ty := 〈w, y〉 and fix t ≤ t0 := 1+λ(ϕ)
2

.

With no loss of generality, let us write w = e1 and y = tye1 +
√

1− t2ye2. Define now

z = −
√

1− t2ye1 + tye2. We claim that{
v ∈ St

∣∣∣ 〈v, z〉√
1− t2

≥ 1

2
√
d

}
⊆ St ∩H−w . (9.24)

If v ∈ St, its projection onto the plane span(y, w), can be written as t · y +
√

1− t2c · z, for

some c ∈ [−1, 1]. So,

〈v, w〉 = t · ty −
√

1− t2
√

1− t2yc.

Now, whenever

c >
t · ty√

1− t2
√

1− t2y
,

we get 〈v, w〉 < 0. Also,

t · ty√
1− t2

√
1− t2y

≤ 1√
3

ty√
1− t2y

≤ 1

2
√
d
,

where we have used t ≤ 1
2

for the first inequality and ty ≤ 1
2
√
d

in the second inequality. By

combining the above displays with 〈v,z〉√
1−t2 = c, (9.24) is established.
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Thus, by taking the marginal of St in the direction of −z, we see

Hd−2(St ∩H−w )

Hd−2(St)
≥
− 1

2
√
d∫

−1

βd−1(s)ds ≥
− 1

2
√
d∫

− 1√
d

βd−1(s)ds ≥ 1

2
√
d
βd−1

(
1√
d

)

≥ 1

2
√
d

Γ(d−1
2

)

Γ(d−2
2

)

(
1− 1

d

)(d−4)/2

≥ 1

10
√
e
,

where we used Γ( d−1
2

)

Γ( d−2
2

)
≥
√
d

5
, valid for any d ≥ 3. We use the above estimates with Fubini’s

theorem to obtain:

P
(
X ∈ H−w

)
=

1∫
−1

f(t)Hd−2(St ∩H−w )dt ≥
t0∫
−1

f(t)Hd−2(St ∩H−w )dt

≥ 1

10
√
e

t0∫
−1

f(t)Hd−2(St)dt =
1

10
√
e
P
(
Z ≤ 1 + λ(ϕ)

2

)
≥ 1− λ(ϕ)

70
.

Mixing

Recall the random function g : T → Sd−1, introduced in Section 9.1.2, which assignes to

the root, r, a uniformly random value and for any other u ∈ T , the label g(u) is distributed

according to ϕ(g(parent(u)), ·)dσ =: µϕ(parent(u)).

Suppose that v ∈ Tk and let {vi}ki=0 denote the simple path from r to v in T . Fix x0 ∈ Sd−1, for

i = 0, . . . , k, we now regard,

Xi := g(vi)|g(r) = x0,

as a random walk on Sd−1. Observe that given Xi−1, Xi ∼ µϕ(Xi−1). The following lemma

shows that this random walk is rapidly-mixing.

Lemma 9.19. For w ∈ Sd−1, let

S(w) =

{
u ∈ Sd−1 : |〈u,w〉| ≤ 1− λ(ϕ)

16
√
d

}
,

and set k0 =
ln(λ(ϕ)(1−λ(ϕ))

32f(1) )
ln(λ(ϕ))

. Then, if f satisfies the assumptions of Theorem 9.7,

P(Xk0 ∈ S(w)) ≥ 1− λ(ϕ)

32
.
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Proof. Note that if U ∼ Uniform(Sd−1), then

P(U ∈ S(w)) =

∫
|t|≤ 1−λ(ϕ)

16
√
d

βd(t)dt ≥ 2
Γ(d

2
)

Γ
(
d−1

2

)βd( 1

16
√
d

)
1− λ(ϕ)

16
√
d
≥ 1− λ(ϕ)

16
. (9.25)

It will then suffice to show that P(Xk0 ∈ S(w)) can be well approximated by P(U ∈ S(w)).

Since Xk0 has density Ak0−1
ϕ f(〈x, x0〉), the following holds true,

(P(U ∈ S(w))− P(Xk0 ∈ S(w)))2 =

 ∫
S(w)

(
Ak0−1
ϕ f(〈x, x0〉)− 1

)
dσ(x)


2

≤
∫

S(w)

(
Ak0−1
ϕ f(〈x, x0〉)− 1

)2
dσ(x).

We now decompose the density as f(〈x, x0〉) =
∞∑
i=0

λiψi(x)ψi(x0). So that

Ak0−1
ϕ f(〈x, x0〉) =

∞∑
i=0

λk0
i ψi(x)ψi(x0).

We know that ψ0 ≡ 1 with eigenvalue λ0 = 1, and we’ve assumed that |λi| ≤ λ1 = λ(ϕ) for

every i ≥ 1. Thus,

∫
S(w)

(
Ak0−1
ϕ f(〈x, x0〉)− 1

)2
dσ(x) =

∫
S(w)

(
∞∑
i=1

λk0
i ψi(x)ψi(x0)

)2

dσ(x)

≤ (λ(ϕ))2k0−2

∫
Sδ(w)

∞∑
i=1

(λiψi(x))2

∞∑
i=1

(λiψi(x0))2dσ(x)

≤ λ(ϕ)2k0−2f(1)2.

where in the last inequality we have used f(1) =
∑
λiψi(y)ψi(y), which is valid for any

y ∈ Sd−1. Thus, since k0 =
ln(λ(ϕ)(1−λ(ϕ))

32f(1) )
ln(λ(ϕ))

, by (9.25), we get,

P(Xk0 ∈ S(w)) ≥ P(U ∈ S(w))− 1− λ(ϕ)

32
≥ 1− λ(ϕ)

32
.

Since the random walk Xk mixes well, we now use Lemma 9.18 to show that after enough

steps, Xk will be approximately invariant to a given reflection.
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Lemma 9.20. Let w, x0 ∈ Sd−1. Then,

Law((g(v))v∈Tk |g(r) = x0) ∈ DPSkw
(
1− qkpk

)
,

where p =

(
1− ln(λ(ϕ))

ln(λ(ϕ)(1−λ(ϕ))
32f(1) )

(1−λ(ϕ))2

600

)
.

Proof. Let R = Id − 2wwT denote the linear reflection with respect to w⊥. Then, the claim is

equivalent to the decomposition,

Xk = PX̃k + (1− P )XR
k ,

whereXR
k is invariant to reflections byR and P ∼ Bernoulli(sk) is independent from {X̃k, X

R
k }

with sk ≤
(

1− ln(λ(ϕ))

ln(λ(ϕ)(1−λ(ϕ))
32f(1) )

(1−λ(ϕ))2

600

)k
.

Consider the case that for some i = 0, ..., k, |〈Xi, w〉| ≤ 1−λ(ϕ)

16
√
d

. In this case, from Lemma

9.18, given Xi, we have the decomposition,

µϕ(Xi) =

(
1− (1− λ(ϕ))

35

)
µϕ,w +

(1− λ(ϕ))

35
µsϕ,w(Xi),

where µsϕ,w(Xi) is R-invariant.

We now generate the random walk in the following way. For i = 0, . . . , k, let

Pi ∼ Bernoulli

(
(1− λ(ϕ))

35

)
, (9.26)

be an i.i.d sequence. Given Xi, if |〈Xi, w〉| > 1−λ(ϕ)

16
√
d

then Xi+1 ∼ µϕ(Xi).

Otherwise, |〈Xi, w〉| ≤ 1−λ(ϕ)

16
√
d

. To decide on the position of Xi+1 we consider Pi. If Pi = 0

then Xi+1 ∼ µϕ,w(Xi). Otherwise Pi = 1 and we generate Xi+1 ∼ µsϕ,w(Xi). We denote the

latter event by Ai and A = ∪k−1
i=0Ai.

It is clear that, conditional on A, RXk
law
= Xk. Thus, to finish the proof, if Ā is the comple-

ment of A, we will need to show

P(Ā) ≤

1− ln(λ(ϕ))

ln
(
λ(ϕ)(1−λ(ϕ))

32f(1)

) (1− λ(ϕ))2

600

k

.

Towards this, let S(w) and k0 be as in Lemma 9.19. Coupled with (9.26), the lemma tells us
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that

P (Ak0) ≥ (1− λ(ϕ))2

600
.

Now, by restarting the random walk from Xk0 if needed, we may show,

P
(
Ā
)
≤
∑
m≤ k

k0

P(Ām·k0) ≤
(

1− (1− λ(ϕ))2

600

) k
k0

≤
(

1− (1− λ(ϕ))2

600k0

)k
.

Hence Law(Xk) ∈ DPS(1 − p) and the claim follows by taking a union bound over all paths.

Proving Theorem 9.7

Proof. By Lemma 9.20, for every w, x0 ∈ Sd−1.

law(g(v)v∈Tk |g(r) = x0) ∈ DPSkw(1− qkpk),

where p =

(
1− ln(λ(ϕ))

ln(λ(ϕ)(1−λ(ϕ))
32f(1) )

(1−λ(ϕ))2

600

)
. By assumption

q ≤ p−1,

and Lemma 9.14 gives the result.
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[124] Ivan Gentil, Christian Léonard, and Luigia Ripani. About the analogy between optimal

transport and minimal entropy. Ann. Fac. Sci. Toulouse Math. (6), 26(3):569–601, 2017.

[125] Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Limita-

tions of lazy training of two-layers neural network. In Advances in Neural Information

Processing Systems, pages 9108–9118, 2019.

[126] Surbhi Goel, Sushrut Karmalkar, and Adam Klivans. Time/accuracy tradeoffs for learn-

ing a relu with respect to Gussian marginals. In Advances in Neural Information Pro-

cessing Systems, pages 8584–8593, 2019.

[127] Jackson Gorham, Andrew B. Duncan, Sebastian J. Vollmer, and Lester Mackey. Measur-

ing sample quality with diffusions. Ann. Appl. Probab., 29(5):2884–2928, 2019.

[128] F. Götze. On the rate of convergence in the multivariate CLT. Ann. Probab., 19(2):724–

739, 1991.
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